
Adam Blank Winter 2021Lecture 2

CS
2

Introduction to Programming
Methods



CS 2: Introduction to Programming Methods

Java Collections



Abstract Data Types (ADT) 1

Abstract Data Type
An abstract data type is a description of what a collection of data can
do. We usually specify these with interfaces.

List ADT
In Java, a List can add, remove, size, get, set.

List Implementations
An ArrayList is a particular type of List. Because it is a list, we promise
it can do everything a List can. A LinkedList is another type of List.

Even though we don’t know how it works, we know it can do everything
a List can, because it’s a List.



Using the List ADT 2

This is INVALID CODE
1 List<String> list = new List<String>(); // BAD : WON’T COMPILE

List is a description of methods. It doesn’t specify how they work.

This Code Is Redundant
1 ArrayList<Integer> list = new ArrayList<Integer>();
2 list.add(5);
3 list.add(6);
4
5 for (int i = 0; i < list.size(); i++) {
6 System.out.println(list.get(i));
7 }
8
9 LinkedList<Integer> list = new LinkedList<Integer>();

10 list.add(5);
11 list.add(6);
12
13 for (int i = 0; i < list.size(); i++) {
14 System.out.println(list.get(i));
15 }

We can’t condense it any more when written this way, because
ArrayList and LinkedList are totally different things.



NOT Using the List ADT 3

Instead, we can use the List interface and swap out different
implementations of lists:

This Uses Interfaces Correctly!
1 List<Integer> list = new ArrayList<Integer>();
2 // = new LinkedList<Integer>();
3 // We can choose which implementation
4 // And the code below will work the
5 // same way for both of them!
6 list.add(5);
7 list.add(6);
8
9 for (int i = 0; i < list.size(); i++) {

10 System.out.println(list.get(i));
11 }

The other benefit is that the code doesn’t change based on which
implementation we (or a client!) want to use!



Alice in Wonderland 4

Count the Number of Distinct Words in a Text
Write a program that counts the number of unique words in a large text
file (say, “Alice in Wonderland”). The program should:

Store the words in a collection and report the number of unique
words in the text file.
Allow the user to search it to see whether various words appear in
the text file.

What collection is appropriate for this problem?

We could use an ArrayList. . .

We’d really like a data structure that takes care of duplicates for us.



Alice in Wonderland 4

Count the Number of Distinct Words in a Text
Write a program that counts the number of unique words in a large text
file (say, “Alice in Wonderland”). The program should:

Store the words in a collection and report the number of unique
words in the text file.
Allow the user to search it to see whether various words appear in
the text file.

What collection is appropriate for this problem?
We could use an ArrayList. . .

We’d really like a data structure that takes care of duplicates for us.



What is a Set? 5

Definition (Set)
A set is an unordered collection of unique values. You can do the
following with a set:

Add element to the set
Remove element from the set
Is element in the set?

How To Think About Sets
Think of a set as a bag with objects in it. You’re allowed to pull things
out of the bag, but someone might shake the bag and re-order the items.

Example Set

“very hello”

“goodbye”

“such strings”

“much wow”
Is “goodbye” in the set? true
Is “doge” in the set? false



Set Implementations 6

Set is an interface in java.util; implementations of that interface are:

TreeSet
Really fast
Does maintain the elements in sorted order

HashSet
REALLY REALLY fast
Does not maintain a useful ordering



Set Reference 7

Constructors
new HashSet<E>() Creates a new HashSet of type E that initially has no

elements

new HashSet<E>(collection) Creates a new HashSet of type E that initially has all
the elements in collection

new TreeSet<E>() Creates a new TreeSet of type E that initially has no
elements

new TreeSet<E>(collection) Creates a new TreeSet of type E that initially has all
the elements in collection

Methods
add(val) Adds val to the set
contains(val) Returns true if val is a member of the set
remove(val) Removes val from the set
clear() Removes all elements from the set
size() Returns the number of elements in the set
isEmpty() Returns true whenever the set contains no elements
toString() Returns a string representation of the set such as

[3, 42, -7, 15]



Data Structure Performance 8

The following is the performance of various data structures at removing
duplicates from a large dictionary of words.



Data Structure Performance, Part 2 9

Note that despite it looking like HashSet and TreeSet have the same
runtime on the previous slide, they do not.



Alice in Wonderland, Take 2 10

Count the Number of Occurrences of Each Word in a Text
Write a program that counts the number of unique words in a large text
file (say, “Alice in Wonderland”). The program should:

Allow the user to type a word and report how many times that word
appeared in the book.
Report all words that appeared in the book at least 500 times, in
alphabetical order.

What collection is appropriate for this problem?

We could use something sort of like LetterInventory, but we don’t
know what the words are in advance. . .

We’d really like a data structure that relates tallies with words.



Alice in Wonderland, Take 2 10

Count the Number of Occurrences of Each Word in a Text
Write a program that counts the number of unique words in a large text
file (say, “Alice in Wonderland”). The program should:

Allow the user to type a word and report how many times that word
appeared in the book.
Report all words that appeared in the book at least 500 times, in
alphabetical order.

What collection is appropriate for this problem?
We could use something sort of like LetterInventory, but we don’t
know what the words are in advance. . .

We’d really like a data structure that relates tallies with words.



What is a Map? 11

Definition (Map)
A map is a data structure that relates keys and values. You can do the following with a map:

Ask what value a particular key maps to.
Change what value a particular key maps to.
Remove whatever the relation is for a given key.

How To Think About Maps
Maps are a lot like functions you’ve seen in math: f(x) = x2 maps 0 to 0, 2 to 4, . . .
Your keys are identifiers for values. Ex: social security numbers (maps SSN → person).
Safe-deposit boxes are another useful analogy. You get a literal key to access your
belongings. If you know what the key is, you can always get whatever you’re keeping safe.

Example Map
Keys Values

“very hello”

“goodbye”

“such strings”

“much wow”

7

12

10

8

How many characters is “much wow”? 8
What does “goodbye” map to? 7
What is the value for ”such strings”? 12



Map Implementations 12

Map is an interface in java.util; implementations of that interface are:

TreeMap

Really fast for all operations.
Does maintain the keys in sorted order

HashMap

REALLY REALLY fast for all operations.
Does not maintain a useful ordering of anything



Map Constructors & Type Parameters 13

Creating A Map
To create a map, you must specify two types:

What type are the keys?
What type are the values?

They can be the same, but they aren’t always.

Constructors

new HashMap<K,V>() Creates a new HashMap with keys of type K and
values of type V that initially has no elements

new TreeMap<K,V>() Creates a new TreeMap with keys of type K and
values of type V that initially has no elements



Map Reference 14

put(key,val) Adds a mapping from key to val; if key already maps to a
value, that mapping is replaced with val

get(key) Returns the value mapped to by the given key or null if
there is no such mapping in the map

containsKey(key) Returns true the map contains a mapping for key
remove(key) Removes any existing mapping for key from the map
clear() Removes all key/value pairs from the map
size() Returns the number of key/value pairs in the map
isEmpty() Returns true whenever the map contains no mappings
toString() Returns a string repr. of the map such as {d=90, a=60}
keySet() Returns a set of all keys in the map
values() Returns a collection of all values in the map
putAll(map) Adds all key/value pairs from the given map to this map
equals(map) Returns true if given map has the same mappings as this



Using A Map 15

Each map can answer one type of question. For example:
If the keys are phone numbers and the values are people

Then, the map can answer questions of the form:

“Who does this phone number belong to?”

1 Map<String,String> people = new HashMap<String,String>();
2 people.put("(206) 616−0034", "Adam’s Office");
3 people.get("(206) 616−0034"); // Returns "Adam’s Office"

The people map can only go in one direction. If we want the other
direction, we need a different map:
If the keys are people and the values are phone numbers

Then, the map can answer questions of the form:

“What is this person’s phone number?”

1 Map<String,String> phoneNumbers = new HashMap<String,String>();
2 phoneNumbers.put("Adam’s Office", "(206) 616−0034");
3 phoneNumbers.get("Adam’s Office"); // Returns "(206) 616−0034"



Using A Map 16

Earlier, we had an example where
keys were “phrases”
values were “# of chars in the key”

That map can answer the question:

“How many characters are in this string?”

1 Map<String,Integer> numChars = new HashMap<String,Integer>();
2 numChars.put("very hello", 10);
3 numChars.put("goodbye", 7);
4 numChars.put("such strings", 12);
5 numChars.put("much wow", 8);
6 numChars.get("much wow"); // Returns 8



keySet 17

There is no good way to go from a value to its key using a map. But
we can go from each key to the values:

1 Map<String, Double> ages = new TreeMap<String, Double>();
2 // These are all according to the internet...a very reliable source!
3 ages.put("Bigfoot", 100);
4 ages.put("Loch Ness Monster", 3.50);
5 ages.put("Chupacabra", 20); // ages.keySet() returns Set<String>
6 ages.put("Yeti", 40000);
7 for (String cryptid : ages.keySet()) {
8 double age = ages.get(cryptid);
9 System.out.println(cryptids + " −> " + age);

10 }

OUTPUT
>> Chupacabra -> 20
>> Loch Ness Monster -> 1500
>> Bigfoot -> 100
>> Yeti -> 40000



values 18

You can get a collection of all the values:

1 Map<String, Double> ages = new TreeMap<String, Double>();
2 // These are all according to the internet...a very reliable source!
3 ages.put("Bigfoot", 100);
4 ages.put("Loch Ness Monster", 3.50);
5 ages.put("Chupacabra", 20); // ages.keySet() returns Set<String>
6 ages.put("Yeti", 40000);
7
8 for (int age : ages.values()) {
9 System.out.println("One of the cryptids is aged " + age);

10 }

OUTPUT
>> One of the cryptids is aged 1500
>> One of the cryptids is aged 40000
>> One of the cryptids is aged 20
>> One of the cryptids is aged 100



Some Set/Map Tips! 19

Sets and Maps are two more collections each with their own places

Sets are for storing data uniquely

Maps are for storing relationships between data; they only work in
one direction

foreach loops are a great tool for looping through collections

You should know the syntax for foreach loops and that Hash and
Tree are types of sets and maps


	Interfaces
	Sets
	Maps

