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Back To LinkedLists 1

Consider the following standard LinkedList:

0 1 2 3

front

Recall the definition of a ListNode
1 public class Node {
2 public int data;
3 public Node next;
4
5 public Node(int data, Node next) {
6 this.data = data;
7 this.next = next;
8 }
9 }

What if we added more fields?
Multiple data fields?
Multiple “next” fields?
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Back To LinkedLists 2

Nodes with Multiple next Fields
1 public class Node {
2 public int data;
3 public Node next1;
4 public Node next2;
5
6 public Node(int data, Node next1, Node next2) {
7 this.data = data;
8 this.next1 = next1;
9 this.next2 = next2;

10 }
11 }
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front

(yellow is next2; red is next1)



Introducing Trees 3

Binary Trees
1 public class Node {
2 public int data;
3 public Node left;
4 public Node right;
5
6 public Node(int data, Node left, Node right) {
7 this.data = data;
8 this.left = left;
9 this.right = right;

10 }
11 }

0

1

3

2

4 5

root

leaf leaf leaf

(red is right; yellow is left)



Back To LinkedLists 4

Consider the following LinkedList of a mathematical expression:

( 2 ∗ 4 ) + ( 7 − 3 )

front

What’s bad about it?

It doesn’t really help us with the structure
Looking at it doesn’t really show us what’s going on

What about this structure instead?

+

∗

2 4

−

7 3

root

Now we can see the order of operations much more clearly!
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Uses of Trees 5

Parsing (Programming Languages, Math, etc.)
+

∗

2 4

−

7 3

Implementing TreeSet
5

3

1 4

8

6

7

9

Directory File Structure

Documents

Videos

Fun.mp4 Yay.mp4 Hello.mp4

Courses

CS1

grades.txt HW

01 02

CS2

answers.txt HW

01 02 03
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More Uses of Trees 6

Recursive Trees (including things like games of Tic-Tac-Toe)

words(2)

words(1)

dddcdbda

a b c d

words(1)

cdcccbca

a b c d

words(1)

bdbcbbba

a b c d

words(1)

adacabaa

a b c d

a b c d



Printing A LinkedList (Again) 7

1 public void print() {
2 Node current = this.front;
3 while (current != null) {
4 System.out.print(current.data + " ");
5 current = current.next;
6 }
7 }

We’d like to figure out how to print trees. Since LinkedLists are
“simpler versions of trees”, they might help.

How do we go in every direction in a tree?

USE RECURSION!
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Printing a LinkedList Recursively 8

To print a LinkedList. . .
Print the front of the list
Print the next of the list (recursively)

Code
1 public void print() {
2 print(this.front);
3 }
4
5 public void print(Node c) {
6 if (c != null) {
7 System.out.print(c.data + " ");
8 print(c.next);
9 }

10 }



Printing a Tree Recursively 9

To print a BinaryTree. . .
Print the root of the tree
Print the left of the tree (recursively)
Print the right of the tree (recursively)

Code
1 public void print() {
2 print(this.root);
3 }
4
5 public void print(Node c) {
6 if (c != null) {
7 System.out.print(c.data + " ");
8 print(c.left);
9 print(c.right);

10 }
11 }



Binary Tree method 10

Binary Tree methods are just normal recursive functions. The base
case/recursive calls will always be similar.

Writing a Binary Tree Method
The base case is current == null.
First recursive case is method(current.left)

Second recursive case is method(current.right)

1 public type method(...) {
2 return method(this.root, ...);
3 }
4 private type method(TreeNode current, ...) {
5 if (current == null) { /* DO BASE CASE */ }
6
7 // Do the left recursive case:
8 type leftResult = method(current.left, ...);
9

10 // Do the right recursive case:
11 type rightResult = method(current.right, ...);
12
13 /* Use the left and right results... */
14 return ...;
15 }



Binary Tree contains() 11

contains()
Write a method, in the IntTree class, called contains():

public boolean contains(int value);

that returns true if the tree contains value and false otherwise.

1 public boolean contains(int value) {
2 return contains(this.root, value);
3 }
4 private boolean contains(Node current, int value) {
5 /* If the tree is null, it definitely doesn’t contain value... */
6 if (current == null) { return false; }
7
8 /* If current *is* value, we found it! */
9 else if (current.data == value) { return true; }

10
11 else {
12 boolean leftContainsValue = contains(current.left, value);
13 boolean rightContainsValue = contains(current.right, value);
14 return leftContainsValue || rightContainsValue;
15 }
16 }
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Back to contains 12

Recall contains()
1 private boolean contains(IntTreeNode current, int value) {
2 /* If the tree is null, it definitely doesn’t contain value... */
3 if (current == null) { return false; }
4
5 /* If current *is* value, we found it! */
6 else if (current.data == value) { return true; }
7
8 else {
9 return contains(current.left, value) ||

10 contains(current.right, value);
11 }
12 }

Runtime of contains(7)

Consider the following tree:

Which nodes do we visit for contains(7)

4

2

1 3

6

5 7

4

2

1 3

6

5 7

That makes the code O(n). Can we do better?
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Doing Better! 13

In general, we can’t do better. BUT, sometimes, we can!

Definition (Binary SEARCH Tree (BST))
A binary tree is a BST when an in-order traversal of the tree yields a
sorted list.

To put it another way, a binary tree is a BST when:
All data “to the left of” a node is less than it
All data “to the right of” a node is greater than it
All sub-trees of the binary tree are also BSTs

Example (Which of the following are BSTs?)

1

2 3

root

2

1 3

root 10

2

1 3

6

12

root

NO YES NO
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contains (AGAIN!) 14

Write contains() for a BST
Fix contains so that it takes advantage of the BST properties.

Recall contains()
1 private boolean contains(IntTreeNode current, int value) {
2 /* If the tree is null, it definitely doesn’t contain value... */
3 if (current == null) { return false; }
4
5 /* If current *is* value, we found it! */
6 else if (current.data == value) { return true; }
7
8 else if (current.data < value) {
9 return contains(current.right, value);

10 }
11 else {
12 return contains(current.left, value);
13 }
14 }
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Tracing the new contains 15

Runtime of (better) contains(7)

Consider the following tree:

Which nodes do we visit for contains(7)

4
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6

5 7
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5 7

That makes the code logn. Much better!

WARNING!
Consider the following tree: 1

2

3
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5

6

7

This is the same tree, but now we have to visit all the nodes!
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Adding to a BST! 16

add
Write a method add in the BST class with the following signature:

public void add(int value);

that preserves the BST property.

Example (tree.add(49))

Before After
55

29

-3 42

87

60 91

55

29

-3 42

49

87

60 91



Adding to a BST (Attempt #1) 17

Attempt #1
1 public void add(int value) {
2 add(this.root, value);
3 }
4 private void add(IntTreeNode current, int value) {
5 if (current == null) {
6 current = new IntTreeNode(value);
7 }
8 else if (current.data > value) {
9 add(current.left, value);

10 }
11 else if (current.data < value) {
12 add(current.right, value);
13 }
14 }

What’s wrong with this solution?
Just like with LinkedLists where we must change front or .next,
we’re not actually changing anything here. We’re discarding the result.



x = change(x) 18

Consider the following code:
1 public static void main(String[] args) {
2 String s = "hello world";
3 s.toUpperCase();
4 System.out.println(s);
5 }

OUTPUT
>> hello world

1 public static void main(String[] args) {
2 String s = "hello world";
3 s = s.toUpperCase();
4 System.out.println(s);
5 }

OUTPUT
>> HELLO WORLD

We must USE the result; otherwise, it gets discarded
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x = change(x) 19

If you want to write a method that can change the object that a variable
refers to, you must do three things:

1 Pass in the original state of the object to the method
2 Return the new (possibly changed) object from the method
3 Re-assign the caller’s variable to store the returned result
1 p = change(p); // in main
2 public static Point change(Point thePoint) {
3 thePoint = new Point(99, −1);
4 return thePoint;
5 }



Adding to a BST (Fixed) 20

Fixed Attempt
1 public void add(int value) {
2 this.root = add(this.root, value);
3 }
4 private IntTreeNode add(IntTreeNode current, int value) {
5 if (current == null) {
6 current = new IntTreeNode(value);
7 }
8 else if (current.data > value) {
9 current.left = add(current.left, value);

10 }
11 else if (current.data < value) {
12 current.right = add(current.right, value);
13 }
14 return current;
15 }

This works because we always update the result, always return the
result, and always update the root.
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