
Adam Blank Winter 2021Lecture 9

CS
2

Introduction to Programming
Methods

CS 2: Introduction to Programming Methods

Trees
1

1 0
1 1 00 00

1 1 100 00
1 0 10001 11

11 00 00 0 001 10
0 000 000 1 00 000 101
00 0000 1 0 00 000 1001
000 00 0000 0 000 1001
1001 000 001 100001001
11001 0001 010 00 010001

11001 101100 001001
11011 1001 011001

1101 10101 01100
11001 1100 01100

0101 1100 01100
0111000110010

0100000100
011000110
011100000 101
011100010111

111 011100110
01011100110

011000110
1011110110
00111101101

0011110010001
11100111110010000111

Outline

1 LinkedLists to BinaryTrees

2 Why Do We Care About Binary Trees?

3 Printing Recursively

4 Introducing BSTs

5 BST Methods

Back To LinkedLists 1

Consider the following standard LinkedList:

0 1 2 3

front

Recall the definition of a ListNode
1 public class Node {
2 public int data;
3 public Node next;
4
5 public Node(int data, Node next) {
6 this.data = data;
7 this.next = next;
8 }
9 }

What if we added more fields?
Multiple data fields?
Multiple “next” fields?

Back To LinkedLists 1

Consider the following standard LinkedList:

0 1 2 3

front

Recall the definition of a ListNode
1 public class Node {
2 public int data;
3 public Node next;
4
5 public Node(int data, Node next) {
6 this.data = data;
7 this.next = next;
8 }
9 }

What if we added more fields?
Multiple data fields?
Multiple “next” fields?

Back To LinkedLists 2

Nodes with Multiple next Fields
1 public class Node {
2 public int data;
3 public Node next1;
4 public Node next2;
5
6 public Node(int data, Node next1, Node next2) {
7 this.data = data;
8 this.next1 = next1;
9 this.next2 = next2;

10 }
11 }

0

1
3

2
4

5
front

(yellow is next2; red is next1)

Introducing Trees 3

Binary Trees
1 public class Node {
2 public int data;
3 public Node left;
4 public Node right;
5
6 public Node(int data, Node left, Node right) {
7 this.data = data;
8 this.left = left;
9 this.right = right;

10 }
11 }

0

1

3

2

4 5

root

leaf leaf leaf

(red is right; yellow is left)

Back To LinkedLists 4

Consider the following LinkedList of a mathematical expression:

(2 ∗ 4) + (7 − 3)

front

What’s bad about it?

It doesn’t really help us with the structure
Looking at it doesn’t really show us what’s going on

What about this structure instead?

+

∗

2 4

−

7 3

root

Now we can see the order of operations much more clearly!

Back To LinkedLists 4

Consider the following LinkedList of a mathematical expression:

(2 ∗ 4) + (7 − 3)

front

What’s bad about it?
It doesn’t really help us with the structure
Looking at it doesn’t really show us what’s going on

What about this structure instead?

+

∗

2 4

−

7 3

root

Now we can see the order of operations much more clearly!

Back To LinkedLists 4

Consider the following LinkedList of a mathematical expression:

(2 ∗ 4) + (7 − 3)

front

What’s bad about it?
It doesn’t really help us with the structure
Looking at it doesn’t really show us what’s going on

What about this structure instead?

+

∗

2 4

−

7 3

root

Now we can see the order of operations much more clearly!

Uses of Trees 5

Parsing (Programming Languages, Math, etc.)
+

∗

2 4

−

7 3

Implementing TreeSet
5

3

1 4

8

6

7

9

Directory File Structure

Documents

Videos

Fun.mp4 Yay.mp4 Hello.mp4

Courses

CS1

grades.txt HW

01 02

CS2

answers.txt HW

01 02 03

Uses of Trees 5

Parsing (Programming Languages, Math, etc.)
+

∗

2 4

−

7 3

Implementing TreeSet
5

3

1 4

8

6

7

9

Directory File Structure

Documents

Videos

Fun.mp4 Yay.mp4 Hello.mp4

Courses

CS1

grades.txt HW

01 02

CS2

answers.txt HW

01 02 03

Uses of Trees 5

Parsing (Programming Languages, Math, etc.)
+

∗

2 4

−

7 3

Implementing TreeSet
5

3

1 4

8

6

7

9

Directory File Structure

Documents

Videos

Fun.mp4 Yay.mp4 Hello.mp4

Courses

CS1

grades.txt HW

01 02

CS2

answers.txt HW

01 02 03

More Uses of Trees 6

Recursive Trees (including things like games of Tic-Tac-Toe)

words(2)

words(1)

dddcdbda

a b c d

words(1)

cdcccbca

a b c d

words(1)

bdbcbbba

a b c d

words(1)

adacabaa

a b c d

a b c d

Printing A LinkedList (Again) 7

1 public void print() {
2 Node current = this.front;
3 while (current != null) {
4 System.out.print(current.data + " ");
5 current = current.next;
6 }
7 }

We’d like to figure out how to print trees. Since LinkedLists are
“simpler versions of trees”, they might help.

How do we go in every direction in a tree?

USE RECURSION!

Printing A LinkedList (Again) 7

1 public void print() {
2 Node current = this.front;
3 while (current != null) {
4 System.out.print(current.data + " ");
5 current = current.next;
6 }
7 }

We’d like to figure out how to print trees. Since LinkedLists are
“simpler versions of trees”, they might help.

How do we go in every direction in a tree?

USE RECURSION!

Printing a LinkedList Recursively 8

To print a LinkedList. . .
Print the front of the list
Print the next of the list (recursively)

Code
1 public void print() {
2 print(this.front);
3 }
4
5 public void print(Node c) {
6 if (c != null) {
7 System.out.print(c.data + " ");
8 print(c.next);
9 }

10 }

Printing a Tree Recursively 9

To print a BinaryTree. . .
Print the root of the tree
Print the left of the tree (recursively)
Print the right of the tree (recursively)

Code
1 public void print() {
2 print(this.root);
3 }
4
5 public void print(Node c) {
6 if (c != null) {
7 System.out.print(c.data + " ");
8 print(c.left);
9 print(c.right);

10 }
11 }

Binary Tree method 10

Binary Tree methods are just normal recursive functions. The base
case/recursive calls will always be similar.

Writing a Binary Tree Method
The base case is current == null.
First recursive case is method(current.left)

Second recursive case is method(current.right)

1 public type method(...) {
2 return method(this.root, ...);
3 }
4 private type method(TreeNode current, ...) {
5 if (current == null) { /* DO BASE CASE */ }
6
7 // Do the left recursive case:
8 type leftResult = method(current.left, ...);
9

10 // Do the right recursive case:
11 type rightResult = method(current.right, ...);
12
13 /* Use the left and right results... */
14 return ...;
15 }

Binary Tree contains() 11

contains()
Write a method, in the IntTree class, called contains():

public boolean contains(int value);

that returns true if the tree contains value and false otherwise.

1 public boolean contains(int value) {
2 return contains(this.root, value);
3 }
4 private boolean contains(Node current, int value) {
5 /* If the tree is null, it definitely doesn’t contain value... */
6 if (current == null) { return false; }
7
8 /* If current *is* value, we found it! */
9 else if (current.data == value) { return true; }

10
11 else {
12 boolean leftContainsValue = contains(current.left, value);
13 boolean rightContainsValue = contains(current.right, value);
14 return leftContainsValue || rightContainsValue;
15 }
16 }

Binary Tree contains() 11

contains()
Write a method, in the IntTree class, called contains():

public boolean contains(int value);

that returns true if the tree contains value and false otherwise.

1 public boolean contains(int value) {
2 return contains(this.root, value);
3 }
4 private boolean contains(Node current, int value) {
5 /* If the tree is null, it definitely doesn’t contain value... */
6 if (current == null) { return false; }
7
8 /* If current *is* value, we found it! */
9 else if (current.data == value) { return true; }

10
11 else {
12 boolean leftContainsValue = contains(current.left, value);
13 boolean rightContainsValue = contains(current.right, value);
14 return leftContainsValue || rightContainsValue;
15 }
16 }

Back to contains 12

Recall contains()
1 private boolean contains(IntTreeNode current, int value) {
2 /* If the tree is null, it definitely doesn’t contain value... */
3 if (current == null) { return false; }
4
5 /* If current *is* value, we found it! */
6 else if (current.data == value) { return true; }
7
8 else {
9 return contains(current.left, value) ||

10 contains(current.right, value);
11 }
12 }

Runtime of contains(7)

Consider the following tree:

Which nodes do we visit for contains(7)

4

2

1 3

6

5 7

4

2

1 3

6

5 7

That makes the code O(n). Can we do better?

Back to contains 12

Recall contains()
1 private boolean contains(IntTreeNode current, int value) {
2 /* If the tree is null, it definitely doesn’t contain value... */
3 if (current == null) { return false; }
4
5 /* If current *is* value, we found it! */
6 else if (current.data == value) { return true; }
7
8 else {
9 return contains(current.left, value) ||

10 contains(current.right, value);
11 }
12 }

Runtime of contains(7)

Consider the following tree: Which nodes do we visit for contains(7)
4

2

1 3

6

5 7

4

2

1 3

6

5 7

That makes the code O(n). Can we do better?

Back to contains 12

Recall contains()
1 private boolean contains(IntTreeNode current, int value) {
2 /* If the tree is null, it definitely doesn’t contain value... */
3 if (current == null) { return false; }
4
5 /* If current *is* value, we found it! */
6 else if (current.data == value) { return true; }
7
8 else {
9 return contains(current.left, value) ||

10 contains(current.right, value);
11 }
12 }

Runtime of contains(7)

Consider the following tree: Which nodes do we visit for contains(7)
4

2

1 3

6

5 7

4

2

1 3

6

5 7

That makes the code O(n). Can we do better?

Doing Better! 13

In general, we can’t do better. BUT, sometimes, we can!

Definition (Binary SEARCH Tree (BST))
A binary tree is a BST when an in-order traversal of the tree yields a
sorted list.

To put it another way, a binary tree is a BST when:
All data “to the left of” a node is less than it
All data “to the right of” a node is greater than it
All sub-trees of the binary tree are also BSTs

Example (Which of the following are BSTs?)

1

2 3

root

2

1 3

root 10

2

1 3

6

12

root

NO YES NO

Doing Better! 13

In general, we can’t do better. BUT, sometimes, we can!

Definition (Binary SEARCH Tree (BST))
A binary tree is a BST when an in-order traversal of the tree yields a
sorted list.

To put it another way, a binary tree is a BST when:
All data “to the left of” a node is less than it
All data “to the right of” a node is greater than it
All sub-trees of the binary tree are also BSTs

Example (Which of the following are BSTs?)

1

2 3

root

2

1 3

root 10

2

1 3

6

12

root

NO YES NO

Doing Better! 13

In general, we can’t do better. BUT, sometimes, we can!

Definition (Binary SEARCH Tree (BST))
A binary tree is a BST when an in-order traversal of the tree yields a
sorted list.

To put it another way, a binary tree is a BST when:
All data “to the left of” a node is less than it
All data “to the right of” a node is greater than it
All sub-trees of the binary tree are also BSTs

Example (Which of the following are BSTs?)

1

2 3

root

2

1 3

root 10

2

1 3

6

12

root

NO YES NO

Doing Better! 13

In general, we can’t do better. BUT, sometimes, we can!

Definition (Binary SEARCH Tree (BST))
A binary tree is a BST when an in-order traversal of the tree yields a
sorted list.

To put it another way, a binary tree is a BST when:
All data “to the left of” a node is less than it
All data “to the right of” a node is greater than it
All sub-trees of the binary tree are also BSTs

Example (Which of the following are BSTs?)

1

2 3

root

2

1 3

root

10

2

1 3

6

12

root

NO YES NO

Doing Better! 13

In general, we can’t do better. BUT, sometimes, we can!

Definition (Binary SEARCH Tree (BST))
A binary tree is a BST when an in-order traversal of the tree yields a
sorted list.

To put it another way, a binary tree is a BST when:
All data “to the left of” a node is less than it
All data “to the right of” a node is greater than it
All sub-trees of the binary tree are also BSTs

Example (Which of the following are BSTs?)

1

2 3

root

2

1 3

root 10

2

1 3

6

12

root

NO YES NO

Doing Better! 13

In general, we can’t do better. BUT, sometimes, we can!

Definition (Binary SEARCH Tree (BST))
A binary tree is a BST when an in-order traversal of the tree yields a
sorted list.

To put it another way, a binary tree is a BST when:
All data “to the left of” a node is less than it
All data “to the right of” a node is greater than it
All sub-trees of the binary tree are also BSTs

Example (Which of the following are BSTs?)

1

2 3

root

2

1 3

root 10

2

1 3

6

12

root

NO YES NO

contains (AGAIN!) 14

Write contains() for a BST
Fix contains so that it takes advantage of the BST properties.

Recall contains()
1 private boolean contains(IntTreeNode current, int value) {
2 /* If the tree is null, it definitely doesn’t contain value... */
3 if (current == null) { return false; }
4
5 /* If current *is* value, we found it! */
6 else if (current.data == value) { return true; }
7
8 else if (current.data < value) {
9 return contains(current.right, value);

10 }
11 else {
12 return contains(current.left, value);
13 }
14 }

contains (AGAIN!) 14

Write contains() for a BST
Fix contains so that it takes advantage of the BST properties.

Recall contains()
1 private boolean contains(IntTreeNode current, int value) {
2 /* If the tree is null, it definitely doesn’t contain value... */
3 if (current == null) { return false; }
4
5 /* If current *is* value, we found it! */
6 else if (current.data == value) { return true; }
7
8 else if (current.data < value) {
9 return contains(current.right, value);

10 }
11 else {
12 return contains(current.left, value);
13 }
14 }

Tracing the new contains 15

Runtime of (better) contains(7)

Consider the following tree:

Which nodes do we visit for contains(7)

4

2

1 3

6

5 7

4

2

1 3

6

5 7

That makes the code logn. Much better!

WARNING!
Consider the following tree: 1

2

3

4

5

6

7

This is the same tree, but now we have to visit all the nodes!

Tracing the new contains 15

Runtime of (better) contains(7)

Consider the following tree: Which nodes do we visit for contains(7)
4

2

1 3

6

5 7

4

2

1 3

6

5 7

That makes the code logn. Much better!

WARNING!
Consider the following tree: 1

2

3

4

5

6

7

This is the same tree, but now we have to visit all the nodes!

Tracing the new contains 15

Runtime of (better) contains(7)

Consider the following tree: Which nodes do we visit for contains(7)
4

2

1 3

6

5 7

4

2

1 3

6

5 7

That makes the code logn. Much better!

WARNING!

Consider the following tree: 1

2

3

4

5

6

7

This is the same tree, but now we have to visit all the nodes!

Tracing the new contains 15

Runtime of (better) contains(7)

Consider the following tree: Which nodes do we visit for contains(7)
4

2

1 3

6

5 7

4

2

1 3

6

5 7

That makes the code logn. Much better!

WARNING!
Consider the following tree: 1

2

3

4

5

6

7

This is the same tree, but now we have to visit all the nodes!

Tracing the new contains 15

Runtime of (better) contains(7)

Consider the following tree: Which nodes do we visit for contains(7)
4

2

1 3

6

5 7

4

2

1 3

6

5 7

That makes the code logn. Much better!

WARNING!
Consider the following tree: 1

2

3

4

5

6

7

This is the same tree, but now we have to visit all the nodes!

Adding to a BST! 16

add
Write a method add in the BST class with the following signature:

public void add(int value);

that preserves the BST property.

Example (tree.add(49))

Before After
55

29

-3 42

87

60 91

55

29

-3 42

49

87

60 91

Adding to a BST (Attempt #1) 17

Attempt #1
1 public void add(int value) {
2 add(this.root, value);
3 }
4 private void add(IntTreeNode current, int value) {
5 if (current == null) {
6 current = new IntTreeNode(value);
7 }
8 else if (current.data > value) {
9 add(current.left, value);

10 }
11 else if (current.data < value) {
12 add(current.right, value);
13 }
14 }

What’s wrong with this solution?
Just like with LinkedLists where we must change front or .next,
we’re not actually changing anything here. We’re discarding the result.

x = change(x) 18

Consider the following code:
1 public static void main(String[] args) {
2 String s = "hello world";
3 s.toUpperCase();
4 System.out.println(s);
5 }

OUTPUT
>> hello world

1 public static void main(String[] args) {
2 String s = "hello world";
3 s = s.toUpperCase();
4 System.out.println(s);
5 }

OUTPUT
>> HELLO WORLD

We must USE the result; otherwise, it gets discarded

x = change(x) 18

Consider the following code:
1 public static void main(String[] args) {
2 String s = "hello world";
3 s.toUpperCase();
4 System.out.println(s);
5 }

OUTPUT
>> hello world

1 public static void main(String[] args) {
2 String s = "hello world";
3 s = s.toUpperCase();
4 System.out.println(s);
5 }

OUTPUT
>> HELLO WORLD

We must USE the result; otherwise, it gets discarded

x = change(x) 18

Consider the following code:
1 public static void main(String[] args) {
2 String s = "hello world";
3 s.toUpperCase();
4 System.out.println(s);
5 }

OUTPUT
>> hello world

1 public static void main(String[] args) {
2 String s = "hello world";
3 s = s.toUpperCase();
4 System.out.println(s);
5 }

OUTPUT
>> HELLO WORLD

We must USE the result; otherwise, it gets discarded

x = change(x) 18

Consider the following code:
1 public static void main(String[] args) {
2 String s = "hello world";
3 s.toUpperCase();
4 System.out.println(s);
5 }

OUTPUT
>> hello world

1 public static void main(String[] args) {
2 String s = "hello world";
3 s = s.toUpperCase();
4 System.out.println(s);
5 }

OUTPUT
>> HELLO WORLD

We must USE the result; otherwise, it gets discarded

x = change(x) 19

If you want to write a method that can change the object that a variable
refers to, you must do three things:

1 Pass in the original state of the object to the method
2 Return the new (possibly changed) object from the method
3 Re-assign the caller’s variable to store the returned result
1 p = change(p); // in main
2 public static Point change(Point thePoint) {
3 thePoint = new Point(99, −1);
4 return thePoint;
5 }

Adding to a BST (Fixed) 20

Fixed Attempt
1 public void add(int value) {
2 this.root = add(this.root, value);
3 }
4 private IntTreeNode add(IntTreeNode current, int value) {
5 if (current == null) {
6 current = new IntTreeNode(value);
7 }
8 else if (current.data > value) {
9 current.left = add(current.left, value);

10 }
11 else if (current.data < value) {
12 current.right = add(current.right, value);
13 }
14 return current;
15 }

This works because we always update the result, always return the
result, and always update the root.

	LinkedLists to BinaryTrees
	Why Do We Care About Binary Trees?
	Printing Recursively
	Introducing BSTs
	BST Methods

