CS 2: Introduction to Programming Methods
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Recursive Backtracking

Definition (Recursive Backtracking)

Recursive Backtracking is an attempt to find solution(s) by building up

partial solutions and abandoning them if they don't work.

Recursive Backtracking Strategy

m |f we found a solution, stop looking (e.g. return)
m Otherwise for each possible choice c. ..
B Make the choice ¢

B Recursively continue to make choices
B Un-make the choice ¢ (if we got back here, it means we need to
continue looking)




Words & Permutations

All Words

Find all length n strings made up of a's, b's, and ¢'s.
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a b ¢ a c a b ¢
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Words & Permutations

All Words

Find all length n strings made up of a's, b's, and ¢'s.
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To do this, we build up partial solutions as follows:

The only length 0 string is ""; so, we're done.
Otherwise, the three choices are a, b, and c:
Make the choice letter
Find all solutions with one fewer letter recursively.
Unmake the choice (to continue looking).



All Words Solution

1 private static void words(int length) {

2 String[] choices = {"a", "b", "c", "d"};

3 // The empty string is the only word of length 0

4 if (length == 0) {

5 print();

6 1

7 else {

8 // Try appending each possible choice to our partial word.

9 for (String choice : choices) {

10 choose(choice); // Add the choice
11 words (length — 1); // Recurse on the rest
12 unchoose(); // Undo the choice
13 }

14 }



Accumulators

private static void words(—i.nt length) {

String[] choices = {"a", "b", "c", "d"};
// The empty string is the only word of length 0
if (length == 0) {
print();
}
else {
for (String choice : choices) {

, length - 1);



Implementing a Tiny Piece of Google
When you enter a query with no spaces like thisisasentence into Google:

thisisasentence

Web Maps Shopping Images News More Search tools

About 101,000 results (0.53 seconds)

Did you mean: this is a sentence

It fixes it into this is a sentence using recursive backtracking.

Sentence Splitting
Given an input string, sentence, containing no spaces, write a method:

public static String splitSentence(String sentence)

that returns sentence split up into words.




Sentence Splitting

Sentence Splitting
Given an input string, sentence, containing no spaces, write a method:

public static String splitSentence(String sentence)

that returns sentence split up into words.

To do recursive backtracking, we need to answer these questions:

What are the choices we're making incrementally?
How do we “undo” a choice?

What are the base case(s)?

It helps to answer these questions for a particular input. So, pretend
we're working with:

thisisasentence



Sentence Splitting

Sentence Splitting
Given an input string, sentence, containing no spaces, write a method:

public static String splitSentence(String sentence)

that returns sentence split up into words.

To do recursive backtracking, we need to answer these questions:

What are the choices we're making incrementally?
... which character to split at

How do we “undo” a choice?
... re-combine a string by the char we split at

What are the base case(s)?
...our left choice isn't a word and our right choice IS a word

It helps to answer these questions for a particular input. So, pretend
we're working with:

thisisasentence



One More Important Choice

When doing recursive backtracking, we need to differentiate between:
finding a result

failing to find a result (e.g., backtracking)



One More Important Choice

When doing recursive backtracking, we need to differentiate between:
finding a result

failing to find a result (e.g., backtracking)

Generally, we do this by treating null as a failure. For example:

On the input, “thisisasentence”, none of the recursive calls should
return “thisis”, because it isn't a word.

If we get down to an empty string, that would indicate a failure; so,
we'd return null



Sentence Splitter Solution

1 public String splitSentence(String sentence) {

2 // The entire sentence is a dictionary word!

3 if (words.contains(sentence)) {

4 return sentence;

5 }

6

7 // Try splitting at every character until we find one that works...
8 for (int i = sentence.length() - 1; i > 0; i—-){

9 String left = sentence.substring(0, i);

10 String right = sentence.substring(i, sentence.length());

11

12 // If the left isn’t a word, don’t bother recursing.

13 // If it is, split the remainder of the sentence recursively.
14 if (words.contains(left)) {

15 right = splitSentence(right);

16 // Since the left was a word, if the right is also an answer,
17 // then we found an answer to the whole thing!

18 if (right != null) {

19 return left + " " + right;

20 }

21

22 // Undo our choice by going back to sentence

23 }

24 }

25 return null;

26 }
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