
CS 2: Introduction to Programming Methods

Recursive Backtracking



Outline

1 Words & Permutations

2 Sentence Splitter

3 Playing With Boolean Expressions



Recursive Backtracking 1

Definition (Recursive Backtracking)
Recursive Backtracking is an attempt to find solution(s) by building up
partial solutions and abandoning them if they don’t work.

Recursive Backtracking Strategy
If we found a solution, stop looking (e.g. return)
Otherwise for each possible choice c. . .

Make the choice c
Recursively continue to make choices
Un-make the choice c (if we got back here, it means we need to
continue looking)



Words & Permutations 2

All Words
Find all length n strings made up of a’s, b’s, and c’s.

words(2)

words(1)

words(0)

cc

words(0)

cb

words(0)

ca

a b c

words(1)

words(0)

bc

words(0)

bb

words(0)

ba

a b c

words(1)

words(0)

ac

words(0)

ab

words(0)

aa

a b c

a b c

To do this, we build up partial solutions as follows:
The only length 0 string is ""; so, we’re done.
Otherwise, the three choices are a, b, and c:

Make the choice letter
Find all solutions with one fewer letter recursively.
Unmake the choice (to continue looking).



Words & Permutations 2

All Words
Find all length n strings made up of a’s, b’s, and c’s.

words(2)

words(1)

words(0)

cc

words(0)

cb

words(0)

ca

a b c

words(1)

words(0)

bc

words(0)

bb

words(0)

ba

a b c

words(1)

words(0)

ac

words(0)

ab

words(0)

aa

a b c

a b c

To do this, we build up partial solutions as follows:
The only length 0 string is ""; so, we’re done.
Otherwise, the three choices are a, b, and c:

Make the choice letter
Find all solutions with one fewer letter recursively.
Unmake the choice (to continue looking).



All Words Solution 3

1 private static void words(int length) {
2 String[] choices = {"a", "b", "c", "d"};
3 // The empty string is the only word of length 0
4 if (length == 0) {
5 print();
6 }
7 else {
8 // Try appending each possible choice to our partial word.
9 for (String choice : choices) {

10 choose(choice); // Add the choice
11 words(length − 1); // Recurse on the rest
12 unchoose(); // Undo the choice
13 }
14 }
15 }



Accumulators 4

1 private static void words(String acc, int length) {
2 String[] choices = {"a", "b", "c", "d"};
3 // The empty string is the only word of length 0
4 if (length == 0) {
5 print();
6 }
7 else {
8 for (String choice : choices) {
9 acc += choice;

10 words(acc, length − 1);
11 acc = acc.substring(0, acc.length() − 1);
12 }
13 }
14 }



Implementing a Tiny Piece of Google 5

When you enter a query with no spaces like thisisasentence into Google:

It fixes it into this is a sentence using recursive backtracking.

Sentence Splitting
Given an input string, sentence, containing no spaces, write a method:

public static String splitSentence(String sentence)

that returns sentence split up into words.



Sentence Splitting 6

Sentence Splitting
Given an input string, sentence, containing no spaces, write a method:

public static String splitSentence(String sentence)

that returns sentence split up into words.

To do recursive backtracking, we need to answer these questions:
What are the choices we’re making incrementally?

. . . which character to split at

How do we “undo” a choice?

. . . re-combine a string by the char we split at

What are the base case(s)?

. . . our left choice isn’t a word and our right choice IS a word

It helps to answer these questions for a particular input. So, pretend
we’re working with:

thisisasentence



Sentence Splitting 6

Sentence Splitting
Given an input string, sentence, containing no spaces, write a method:

public static String splitSentence(String sentence)

that returns sentence split up into words.

To do recursive backtracking, we need to answer these questions:
What are the choices we’re making incrementally?
. . . which character to split at
How do we “undo” a choice?
. . . re-combine a string by the char we split at
What are the base case(s)?
. . . our left choice isn’t a word and our right choice IS a word

It helps to answer these questions for a particular input. So, pretend
we’re working with:

thisisasentence



One More Important Choice 7

When doing recursive backtracking, we need to di�erentiate between:
finding a result
failing to find a result (e.g., backtracking)

Generally, we do this by treating null as a failure. For example:
On the input, “thisisasentence”, none of the recursive calls should
return “thisis”, because it isn’t a word.
If we get down to an empty string, that would indicate a failure; so,
we’d return null



One More Important Choice 7

When doing recursive backtracking, we need to di�erentiate between:
finding a result
failing to find a result (e.g., backtracking)

Generally, we do this by treating null as a failure. For example:
On the input, “thisisasentence”, none of the recursive calls should
return “thisis”, because it isn’t a word.
If we get down to an empty string, that would indicate a failure; so,
we’d return null



Sentence Splitter Solution 8

1 public String splitSentence(String sentence) {
2 // The entire sentence is a dictionary word!
3 if (words.contains(sentence)) {
4 return sentence;
5 }
6
7 // Try splitting at every character until we find one that works...
8 for (int i = sentence.length() − 1; i > 0; i−−){
9 String left = sentence.substring(0, i);

10 String right = sentence.substring(i, sentence.length());
11
12 // If the left isn’t a word, don’t bother recursing.
13 // If it is, split the remainder of the sentence recursively.
14 if (words.contains(left)) {
15 right = splitSentence(right);
16 // Since the left was a word, if the right is also an answer,
17 // then we found an answer to the whole thing!
18 if (right != null) {
19 return left + " " + right;
20 }
21
22 // Undo our choice by going back to sentence
23 }
24 }
25 return null;
26 }


	Words & Permutations
	Sentence Splitter
	Playing With Boolean Expressions

