CS 2: Introduction to Programming Methods

Recursive Backtracking




Outline

1 Words & Permutations

2 Sentence Splitter

3 Playing With Boolean Expressions



Recursive Backtracking

Definition (Recursive Backtracking)

Recursive Backtracking is an attempt to find solution(s) by building up

partial solutions and abandoning them if they don't work.

Recursive Backtracking Strategy

m |f we found a solution, stop looking (e.g. return)
m Otherwise for each possible choice c. ..
B Make the choice ¢

B Recursively continue to make choices
B Un-make the choice ¢ (if we got back here, it means we need to
continue looking)




Words & Permutations

All Words

Find all length n strings made up of a's, b's, and ¢'s.

words (2)
words (1) words (1) words (1)

a b ¢ a c a b ¢

N TN TN

words(0) words(0) words(0) words(0) words(0) words(0) words(0) words(0) words(0)

A O

EES ab ac ba b bc ca cb cc

&



Words & Permutations

All Words

Find all length n strings made up of a's, b's, and ¢'s.

words (2)

a b c
words (1) words (1) words (1)

a b ¢ a c a b ¢

N TN TN

words(0) words(0) words(0) words(0) words(0) words(0) words(0) words(0) words(0)

A O

EES ab ac ba b bc ca cb cc

&

To do this, we build up partial solutions as follows:

The only length 0 string is ""; so, we're done.
Otherwise, the three choices are a, b, and c:
Make the choice letter
Find all solutions with one fewer letter recursively.
Unmake the choice (to continue looking).



All Words Solution

1 private static void words(int length) {

2 String[] choices = {"a", "b", "c", "d"};

3 // The empty string is the only word of length 0

4 if (length == 0) {

5 print();

6 1

7 else {

8 // Try appending each possible choice to our partial word.

9 for (String choice : choices) {

10 choose(choice); // Add the choice
11 words (length — 1); // Recurse on the rest
12 unchoose(); // Undo the choice
13 }

14 }



Accumulators

private static void words(—i.nt length) {

String[] choices = {"a", "b", "c", "d"};
// The empty string is the only word of length 0
if (length == 0) {
print();
}
else {
for (String choice : choices) {

, length - 1);



Implementing a Tiny Piece of Google
When you enter a query with no spaces like thisisasentence into Google:

thisisasentence

Web Maps Shopping Images News More Search tools

About 101,000 results (0.53 seconds)

Did you mean: this is a sentence

It fixes it into this is a sentence using recursive backtracking.

Sentence Splitting
Given an input string, sentence, containing no spaces, write a method:

public static String splitSentence(String sentence)

that returns sentence split up into words.




Sentence Splitting

Sentence Splitting
Given an input string, sentence, containing no spaces, write a method:

public static String splitSentence(String sentence)

that returns sentence split up into words.

To do recursive backtracking, we need to answer these questions:

What are the choices we're making incrementally?
How do we “undo” a choice?

What are the base case(s)?

It helps to answer these questions for a particular input. So, pretend
we're working with:

thisisasentence



Sentence Splitting

Sentence Splitting
Given an input string, sentence, containing no spaces, write a method:

public static String splitSentence(String sentence)

that returns sentence split up into words.

To do recursive backtracking, we need to answer these questions:

What are the choices we're making incrementally?
... which character to split at

How do we “undo” a choice?
... re-combine a string by the char we split at

What are the base case(s)?
...our left choice isn't a word and our right choice IS a word

It helps to answer these questions for a particular input. So, pretend
we're working with:

thisisasentence



One More Important Choice

When doing recursive backtracking, we need to differentiate between:
finding a result

failing to find a result (e.g., backtracking)



One More Important Choice

When doing recursive backtracking, we need to differentiate between:
finding a result

failing to find a result (e.g., backtracking)

Generally, we do this by treating null as a failure. For example:

On the input, “thisisasentence”, none of the recursive calls should
return “thisis”, because it isn't a word.

If we get down to an empty string, that would indicate a failure; so,
we'd return null



Sentence Splitter Solution

1 public String splitSentence(String sentence) {

2 // The entire sentence is a dictionary word!

3 if (words.contains(sentence)) {

4 return sentence;

5 }

6

7 // Try splitting at every character until we find one that works...
8 for (int i = sentence.length() - 1; i > 0; i—-){

9 String left = sentence.substring(0, i);

10 String right = sentence.substring(i, sentence.length());

11

12 // If the left isn’t a word, don’t bother recursing.

13 // If it is, split the remainder of the sentence recursively.
14 if (words.contains(left)) {

15 right = splitSentence(right);

16 // Since the left was a word, if the right is also an answer,
17 // then we found an answer to the whole thing!

18 if (right != null) {

19 return left + " " + right;

20 }

21

22 // Undo our choice by going back to sentence

23 }

24 }

25 return null;

26 }



	Words & Permutations
	Sentence Splitter
	Playing With Boolean Expressions

