
Adam Blank Winter 2021Lecture 11

CS
2

Introduction to Programming
Methods

CS 2: Introduction to Programming Methods

Asymptotic Analysis

Outline

1 Comparing Algorithms

2 Asymptotic Analysis

Comparing Programs 1

What does it mean to have an “efficient program”?

1 System.out.println("hello"); vs.

1 System.out.print("h");
2 System.out.print("e");
3 System.out.print("l");
4 System.out.print("l");
5 System.out.println("o");

OUTPUT
>> left average run time is 1000 ns.
>> right average run time is 5000 ns.

We’re measuring in NANOSECONDS!

Both of these run very very quickly. The first is definitely better style,
but it’s not “more efficient.”

Comparing Programs: Timing 2

hasDuplicate

Given a sorted int array, determine if the array has a duplicate.

Algorithm 1

For each pair of elements, check if they’re the same.

Algorithm 2
For each element, check if it’s equal to the one after it.

Why Not Time Programs?
Timing programs is prone to error (not reliable or portable):

Hardware: processor(s), memory, etc.
OS, Java version, libraries, drivers
Other programs running
Implementation dependent
Can we even time an algorithm?

Comparing Programs: Timing 2

hasDuplicate

Given a sorted int array, determine if the array has a duplicate.

Algorithm 1
For each pair of elements, check if they’re the same.

Algorithm 2

For each element, check if it’s equal to the one after it.

Why Not Time Programs?
Timing programs is prone to error (not reliable or portable):

Hardware: processor(s), memory, etc.
OS, Java version, libraries, drivers
Other programs running
Implementation dependent
Can we even time an algorithm?

Comparing Programs: Timing 2

hasDuplicate

Given a sorted int array, determine if the array has a duplicate.

Algorithm 1
For each pair of elements, check if they’re the same.

Algorithm 2
For each element, check if it’s equal to the one after it.

Why Not Time Programs?

Timing programs is prone to error (not reliable or portable):
Hardware: processor(s), memory, etc.
OS, Java version, libraries, drivers
Other programs running
Implementation dependent
Can we even time an algorithm?

Comparing Programs: Timing 2

hasDuplicate

Given a sorted int array, determine if the array has a duplicate.

Algorithm 1
For each pair of elements, check if they’re the same.

Algorithm 2
For each element, check if it’s equal to the one after it.

Why Not Time Programs?
Timing programs is prone to error (not reliable or portable):

Hardware: processor(s), memory, etc.
OS, Java version, libraries, drivers
Other programs running
Implementation dependent
Can we even time an algorithm?

Comparing Programs: # Of Steps 3

hasDuplicate

Given a sorted int array, determine if the array has a duplicate.

Example
public int stepsHasDuplicate1(int[] array) {

int steps = 0;
for (int i=0; i < array.length; i++) {

for (int j=0; j < array.length; j++) {
steps++; // The if statement is a step
if (i != j && array[i] == array[j]) {

return steps;
}

}
}
return steps;

}

OUTPUT
>> hasDuplicate1 average number of steps is 9758172 steps.
>> hasDuplicate2 average number of steps is 170 steps.

Why Not Count Steps in Programs?
Can we even count steps for an algorithm?
We must do this via testing; so, we may miss worst-case input!
We must do this via testing; so, we may miss best-case input!

Comparing Programs: Plotting 4

Instead, let’s try running on arrays of size 1, 2, 3, . . . , 1000000, and plot:

Why Not Plot Steps in Programs?
Can we even count steps for an algorithm?
We must do this via testing; so, we may miss worst-case input!
We must do this via testing; so, we may miss best-case input!

Comparing////////////Programs Algorithms: Our Requirements 5

We want to compare algorithms, not programs. In general, there are
many answers (clarity, security, etc.). Performance (space, time, etc.) are
generally among the most important.

Only consider large inputs (any algorithm will work on 10)

Answer will be independent of CPU speed, programming language,
coding tricks, etc.

Answer is general and rigorous, complementary to “coding it up and
counting steps on some test cases”

Can do analysis before coding!

Comparing////////////Programs Algorithms: Our Requirements 5

We want to compare algorithms, not programs. In general, there are
many answers (clarity, security, etc.). Performance (space, time, etc.) are
generally among the most important.

Only consider large inputs (any algorithm will work on 10)

Answer will be independent of CPU speed, programming language,
coding tricks, etc.

Answer is general and rigorous, complementary to “coding it up and
counting steps on some test cases”

Can do analysis before coding!

Comparing////////////Programs Algorithms: Our Requirements 5

We want to compare algorithms, not programs. In general, there are
many answers (clarity, security, etc.). Performance (space, time, etc.) are
generally among the most important.

Only consider large inputs (any algorithm will work on 10)

Answer will be independent of CPU speed, programming language,
coding tricks, etc.

Answer is general and rigorous, complementary to “coding it up and
counting steps on some test cases”

Can do analysis before coding!

Comparing////////////Programs Algorithms: Our Requirements 5

We want to compare algorithms, not programs. In general, there are
many answers (clarity, security, etc.). Performance (space, time, etc.) are
generally among the most important.

Only consider large inputs (any algorithm will work on 10)

Answer will be independent of CPU speed, programming language,
coding tricks, etc.

Answer is general and rigorous, complementary to “coding it up and
counting steps on some test cases”

Can do analysis before coding!

Comparing////////////Programs Algorithms: Our Requirements 5

We want to compare algorithms, not programs. In general, there are
many answers (clarity, security, etc.). Performance (space, time, etc.) are
generally among the most important.

Only consider large inputs (any algorithm will work on 10)

Answer will be independent of CPU speed, programming language,
coding tricks, etc.

Answer is general and rigorous, complementary to “coding it up and
counting steps on some test cases”

Can do analysis before coding!

Comparing Code: Analytically 6

Basic Operations take “some amount of” Constant Time
Arithmetic (fixed-width)
Variable Assignment
Access one Java field or array index
etc.

(This is an approximation of reality: a very useful “lie”.)

Complex Operations
Consecutive Statements. Sum of time of each statement
Conditionals. Time of condition + max(ifBranch, elseBranch)
Loops. Number of iterations ∗ Time for Loop Body
Function Calls. Time of function’s body
Recursive Function Calls. Solve Recurrence

Analyzing hasDuplicate 7

public boolean hasDuplicate1(int[] array) {
for (int i=0; i < array.length; i++) { // 1

for (int j=0; j < array.length; j++) { // 1
if (i != j && array[i] == array[j]) { // 1

return true; // 1
}

}
}
return false; // 1

}

2 2N + 1 (2N +1)(N +1)

public boolean hasDuplicate2(int[] array) {
for (int i=0; i < array.length − 1; i++) { // 1

if (array[i] == array[i+1]) { // 1
return true; // 1

}
}
return false; // 1

}

2 2N 2N + 1

Outline

1 Comparing Algorithms

2 Asymptotic Analysis

Investigating with Pictures 8

0 200 400 600 800 1000
0

50 000

100 000

150 000

200 000

fHxL

gHxL

Should we consider these “the same”?

Investigating with Pictures 9

0 1000 2000 3000 4000
0

2´106

4´106

6´106

8´106

fHxL
gHxL

x2

Probably a good idea, since they seem to be growing at the same rate.
For reference, the function that dwarfs them both is x2.

Investigating with Pictures 2 10

0 50 100 150 200
0

5000

10 000

15 000

20 000

25 000

30 000

35 000

fHxL

gHxL

Here’s two functions, f (x) and g(x). Ultimately, g(x) will grow much
faster than f (x), but at the beginning, it is smaller.

Asymptotics 11

We’d like to be able to compare two functions. Intuitively, we want an
operation like “≤” (e.g. 4 ≤ 5), but for functions.

If we have f and 4 f , we should consider them the same:

f ≤ g when. . .

f ≤ cg where c is a constant and c ≠ 0.

We also care about all values of the function that are big enough:

f ≤ g when. . .
For all n “large enough”, f (n) ≤ cg(n), where c ≠ 0
For some n0 ≥ 0, for all n ≥ n0, f (n) ≤ cg(n), where c ≠ 0
For some c ≠ 0, for some n0 ≥ 0, for all n ≥ n0, f (n) ≤ cg(n)

Definition (Big-Oh)
We say a function f ∶ A→ B is dominated by a function g ∶ A→ B when:

∃(c,n0 > 0). ∀(n ≥ n0). f (n) ≤ cg(n)

Formally, we write this as f ∈O(g).

Asymptotics 11

We’d like to be able to compare two functions. Intuitively, we want an
operation like “≤” (e.g. 4 ≤ 5), but for functions.

If we have f and 4 f , we should consider them the same:

f ≤ g when. . .
f ≤ cg where c is a constant and c ≠ 0.

We also care about all values of the function that are big enough:

f ≤ g when. . .

For all n “large enough”, f (n) ≤ cg(n), where c ≠ 0
For some n0 ≥ 0, for all n ≥ n0, f (n) ≤ cg(n), where c ≠ 0
For some c ≠ 0, for some n0 ≥ 0, for all n ≥ n0, f (n) ≤ cg(n)

Definition (Big-Oh)
We say a function f ∶ A→ B is dominated by a function g ∶ A→ B when:

∃(c,n0 > 0). ∀(n ≥ n0). f (n) ≤ cg(n)

Formally, we write this as f ∈O(g).

Asymptotics 11

We’d like to be able to compare two functions. Intuitively, we want an
operation like “≤” (e.g. 4 ≤ 5), but for functions.

If we have f and 4 f , we should consider them the same:

f ≤ g when. . .
f ≤ cg where c is a constant and c ≠ 0.

We also care about all values of the function that are big enough:

f ≤ g when. . .
For all n “large enough”, f (n) ≤ cg(n), where c ≠ 0

For some n0 ≥ 0, for all n ≥ n0, f (n) ≤ cg(n), where c ≠ 0
For some c ≠ 0, for some n0 ≥ 0, for all n ≥ n0, f (n) ≤ cg(n)

Definition (Big-Oh)
We say a function f ∶ A→ B is dominated by a function g ∶ A→ B when:

∃(c,n0 > 0). ∀(n ≥ n0). f (n) ≤ cg(n)

Formally, we write this as f ∈O(g).

Asymptotics 11

We’d like to be able to compare two functions. Intuitively, we want an
operation like “≤” (e.g. 4 ≤ 5), but for functions.

If we have f and 4 f , we should consider them the same:

f ≤ g when. . .
f ≤ cg where c is a constant and c ≠ 0.

We also care about all values of the function that are big enough:

f ≤ g when. . .
For all n “large enough”, f (n) ≤ cg(n), where c ≠ 0
For some n0 ≥ 0, for all n ≥ n0, f (n) ≤ cg(n), where c ≠ 0

For some c ≠ 0, for some n0 ≥ 0, for all n ≥ n0, f (n) ≤ cg(n)

Definition (Big-Oh)
We say a function f ∶ A→ B is dominated by a function g ∶ A→ B when:

∃(c,n0 > 0). ∀(n ≥ n0). f (n) ≤ cg(n)

Formally, we write this as f ∈O(g).

Asymptotics 11

We’d like to be able to compare two functions. Intuitively, we want an
operation like “≤” (e.g. 4 ≤ 5), but for functions.

If we have f and 4 f , we should consider them the same:

f ≤ g when. . .
f ≤ cg where c is a constant and c ≠ 0.

We also care about all values of the function that are big enough:

f ≤ g when. . .
For all n “large enough”, f (n) ≤ cg(n), where c ≠ 0
For some n0 ≥ 0, for all n ≥ n0, f (n) ≤ cg(n), where c ≠ 0
For some c ≠ 0, for some n0 ≥ 0, for all n ≥ n0, f (n) ≤ cg(n)

Definition (Big-Oh)
We say a function f ∶ A→ B is dominated by a function g ∶ A→ B when:

∃(c,n0 > 0). ∀(n ≥ n0). f (n) ≤ cg(n)

Formally, we write this as f ∈O(g).

Asymptotics 11

We’d like to be able to compare two functions. Intuitively, we want an
operation like “≤” (e.g. 4 ≤ 5), but for functions.

If we have f and 4 f , we should consider them the same:

f ≤ g when. . .
f ≤ cg where c is a constant and c ≠ 0.

We also care about all values of the function that are big enough:

f ≤ g when. . .
For all n “large enough”, f (n) ≤ cg(n), where c ≠ 0
For some n0 ≥ 0, for all n ≥ n0, f (n) ≤ cg(n), where c ≠ 0
For some c ≠ 0, for some n0 ≥ 0, for all n ≥ n0, f (n) ≤ cg(n)

Definition (Big-Oh)
We say a function f ∶ A→ B is dominated by a function g ∶ A→ B when:

∃(c,n0 > 0). ∀(n ≥ n0). f (n) ≤ cg(n)

Formally, we write this as f ∈O(g).

Asymptotics 11

We’d like to be able to compare two functions. Intuitively, we want an
operation like “≤” (e.g. 4 ≤ 5), but for functions.

If we have f and 4 f , we should consider them the same:

f ≤ g when. . .
f ≤ cg where c is a constant and c ≠ 0.

We also care about all values of the function that are big enough:

f ≤ g when. . .
For all n “large enough”, f (n) ≤ cg(n), where c ≠ 0
For some n0 ≥ 0, for all n ≥ n0, f (n) ≤ cg(n), where c ≠ 0
For some c ≠ 0, for some n0 ≥ 0, for all n ≥ n0, f (n) ≤ cg(n)

Definition (Big-Oh)
We say a function f ∶ A→ B is dominated by a function g ∶ A→ B when:

∃(c,n0 > 0). ∀(n ≥ n0). f (n) ≤ cg(n)

Formally, we write this as f ∈O(g).

Big-Oh Examples 12

True or False?
(1) 4+3n ∈O(n)

True (n = n)

(2) 4+3n =O(1)

False: (n >> 1)

(3) 4+3n is O(n2)

True: (n ≤ n2)

(4) n+2logn ∈O(logn)

False: (n >> logn)

(5) logn ∈O(n+2logn)

True: (logn ≤ n+2logn)

Big-Oh Gotchas
O(f) is a set! This means we should treat it as such.
If we know f (n) ∈O(n), then it is also the case that f (n) ∈O(n2),
and f (n) ∈O(n3), etc.
Remember that small cases, really don’t matter. As long as it’s
eventually an upper bound, it fits the definition.

Okay, but we haven’t actually shown anything. Let’s prove (1) and (2).

Big-Oh Examples 12

True or False?
(1) 4+3n ∈O(n) True (n = n)
(2) 4+3n =O(1)

False: (n >> 1)

(3) 4+3n is O(n2)

True: (n ≤ n2)

(4) n+2logn ∈O(logn)

False: (n >> logn)

(5) logn ∈O(n+2logn)

True: (logn ≤ n+2logn)

Big-Oh Gotchas
O(f) is a set! This means we should treat it as such.
If we know f (n) ∈O(n), then it is also the case that f (n) ∈O(n2),
and f (n) ∈O(n3), etc.
Remember that small cases, really don’t matter. As long as it’s
eventually an upper bound, it fits the definition.

Okay, but we haven’t actually shown anything. Let’s prove (1) and (2).

Big-Oh Examples 12

True or False?
(1) 4+3n ∈O(n) True (n = n)
(2) 4+3n =O(1) False: (n >> 1)
(3) 4+3n is O(n2)

True: (n ≤ n2)

(4) n+2logn ∈O(logn)

False: (n >> logn)

(5) logn ∈O(n+2logn)

True: (logn ≤ n+2logn)

Big-Oh Gotchas
O(f) is a set! This means we should treat it as such.
If we know f (n) ∈O(n), then it is also the case that f (n) ∈O(n2),
and f (n) ∈O(n3), etc.
Remember that small cases, really don’t matter. As long as it’s
eventually an upper bound, it fits the definition.

Okay, but we haven’t actually shown anything. Let’s prove (1) and (2).

Big-Oh Examples 12

True or False?
(1) 4+3n ∈O(n) True (n = n)
(2) 4+3n =O(1) False: (n >> 1)
(3) 4+3n is O(n2) True: (n ≤ n2)
(4) n+2logn ∈O(logn)

False: (n >> logn)

(5) logn ∈O(n+2logn)

True: (logn ≤ n+2logn)

Big-Oh Gotchas
O(f) is a set! This means we should treat it as such.
If we know f (n) ∈O(n), then it is also the case that f (n) ∈O(n2),
and f (n) ∈O(n3), etc.
Remember that small cases, really don’t matter. As long as it’s
eventually an upper bound, it fits the definition.

Okay, but we haven’t actually shown anything. Let’s prove (1) and (2).

Big-Oh Examples 12

True or False?
(1) 4+3n ∈O(n) True (n = n)
(2) 4+3n =O(1) False: (n >> 1)
(3) 4+3n is O(n2) True: (n ≤ n2)
(4) n+2logn ∈O(logn) False: (n >> logn)
(5) logn ∈O(n+2logn)

True: (logn ≤ n+2logn)

Big-Oh Gotchas
O(f) is a set! This means we should treat it as such.
If we know f (n) ∈O(n), then it is also the case that f (n) ∈O(n2),
and f (n) ∈O(n3), etc.
Remember that small cases, really don’t matter. As long as it’s
eventually an upper bound, it fits the definition.

Okay, but we haven’t actually shown anything. Let’s prove (1) and (2).

Big-Oh Examples 12

True or False?
(1) 4+3n ∈O(n) True (n = n)
(2) 4+3n =O(1) False: (n >> 1)
(3) 4+3n is O(n2) True: (n ≤ n2)
(4) n+2logn ∈O(logn) False: (n >> logn)
(5) logn ∈O(n+2logn) True: (logn ≤ n+2logn)

Big-Oh Gotchas
O(f) is a set! This means we should treat it as such.
If we know f (n) ∈O(n), then it is also the case that f (n) ∈O(n2),
and f (n) ∈O(n3), etc.
Remember that small cases, really don’t matter. As long as it’s
eventually an upper bound, it fits the definition.

Okay, but we haven’t actually shown anything. Let’s prove (1) and (2).

Big-Oh Examples 12

True or False?
(1) 4+3n ∈O(n) True (n = n)
(2) 4+3n =O(1) False: (n >> 1)
(3) 4+3n is O(n2) True: (n ≤ n2)
(4) n+2logn ∈O(logn) False: (n >> logn)
(5) logn ∈O(n+2logn) True: (logn ≤ n+2logn)

Big-Oh Gotchas
O(f) is a set! This means we should treat it as such.
If we know f (n) ∈O(n), then it is also the case that f (n) ∈O(n2),
and f (n) ∈O(n3), etc.
Remember that small cases, really don’t matter. As long as it’s
eventually an upper bound, it fits the definition.

Okay, but we haven’t actually shown anything. Let’s prove (1) and (2).

Big-Oh Examples 12

True or False?
(1) 4+3n ∈O(n) True (n = n)
(2) 4+3n =O(1) False: (n >> 1)
(3) 4+3n is O(n2) True: (n ≤ n2)
(4) n+2logn ∈O(logn) False: (n >> logn)
(5) logn ∈O(n+2logn) True: (logn ≤ n+2logn)

Big-Oh Gotchas
O(f) is a set! This means we should treat it as such.
If we know f (n) ∈O(n), then it is also the case that f (n) ∈O(n2),
and f (n) ∈O(n3), etc.
Remember that small cases, really don’t matter. As long as it’s
eventually an upper bound, it fits the definition.

Okay, but we haven’t actually shown anything. Let’s prove (1) and (2).

Big-Oh Proofs 13

Definition (Big-Oh)
We say a function f ∶ A→ B is dominated by a function g ∶ A→ B when:

∃(c,n0 > 0). ∀(n ≥ n0). f (n) ≤ cg(n)

Formally, we write this as f ∈O(g).

We want to prove 4+3n ∈O(n). That is, we want to prove:

∃(c,n0 > 0). ∀(n ≥ n0). 4+3n ≤ cn

Proof Strategy

Choose a c, n0 that work.
Prove that they work for all n ≥ n0.

Proof
Choose c = 5 and n0 = 5. Then, note that 4+3n ≤ 4n ≤ 5n, because n ≥ 5.
It follows that 4+3n ∈O(n).

Big-Oh Proofs 13

Definition (Big-Oh)
We say a function f ∶ A→ B is dominated by a function g ∶ A→ B when:

∃(c,n0 > 0). ∀(n ≥ n0). f (n) ≤ cg(n)

Formally, we write this as f ∈O(g).

We want to prove 4+3n ∈O(n). That is, we want to prove:

∃(c,n0 > 0). ∀(n ≥ n0). 4+3n ≤ cn

Proof Strategy
Choose a c, n0 that work.

Prove that they work for all n ≥ n0.

Proof
Choose c = 5 and n0 = 5. Then, note that 4+3n ≤ 4n ≤ 5n, because n ≥ 5.
It follows that 4+3n ∈O(n).

Big-Oh Proofs 13

Definition (Big-Oh)
We say a function f ∶ A→ B is dominated by a function g ∶ A→ B when:

∃(c,n0 > 0). ∀(n ≥ n0). f (n) ≤ cg(n)

Formally, we write this as f ∈O(g).

We want to prove 4+3n ∈O(n). That is, we want to prove:

∃(c,n0 > 0). ∀(n ≥ n0). 4+3n ≤ cn

Proof Strategy
Choose a c, n0 that work.
Prove that they work for all n ≥ n0.

Proof

Choose c = 5 and n0 = 5. Then, note that 4+3n ≤ 4n ≤ 5n, because n ≥ 5.
It follows that 4+3n ∈O(n).

Big-Oh Proofs 13

Definition (Big-Oh)
We say a function f ∶ A→ B is dominated by a function g ∶ A→ B when:

∃(c,n0 > 0). ∀(n ≥ n0). f (n) ≤ cg(n)

Formally, we write this as f ∈O(g).

We want to prove 4+3n ∈O(n). That is, we want to prove:

∃(c,n0 > 0). ∀(n ≥ n0). 4+3n ≤ cn

Proof Strategy
Choose a c, n0 that work.
Prove that they work for all n ≥ n0.

Proof
Choose c = 5 and n0 = 5. Then, note that 4+3n ≤ 4n ≤ 5n, because n ≥ 5.
It follows that 4+3n ∈O(n).

Big-Oh Proofs 2 14

Definition (Big-Oh)
We say a function f ∶ A→ B is dominated by a function g ∶ A→ B when:

∃(c,n0 > 0). ∀(n ≥ n0). f (n) ≤ cg(n)

Formally, we write this as f ∈O(g).

We want to prove 4+3n+4n2 ∈O(n3).

Scratch Work
We want to choose a c and n0 such that 4+3n+4n2 ≤ cn3. So, manipulate
the equation:

4+3n+4n2 ≤ 4n3+3n3+4n3 = 11n3

For this to work, we need 4 ≤ 4n3 and 3n ≤ 3n3. n ≥ 1 satisfies this.

Proof
Choose c = 11 and n0 = 1. Then, note that 4+3n+4n2 ≤ 4n3+3n3+4n3 =
11n3, because n ≥ 1. It follows that 4+3n+4n2 ∈O(n3).

Big-Oh Proofs 2 14

Definition (Big-Oh)
We say a function f ∶ A→ B is dominated by a function g ∶ A→ B when:

∃(c,n0 > 0). ∀(n ≥ n0). f (n) ≤ cg(n)

Formally, we write this as f ∈O(g).

We want to prove 4+3n+4n2 ∈O(n3).

Scratch Work
We want to choose a c and n0 such that 4+3n+4n2 ≤ cn3. So, manipulate
the equation:

4+3n+4n2 ≤ 4n3+3n3+4n3 = 11n3

For this to work, we need 4 ≤ 4n3 and 3n ≤ 3n3. n ≥ 1 satisfies this.

Proof
Choose c = 11 and n0 = 1. Then, note that 4+3n+4n2 ≤ 4n3+3n3+4n3 =
11n3, because n ≥ 1. It follows that 4+3n+4n2 ∈O(n3).

Big-Oh Proofs 2 14

Definition (Big-Oh)
We say a function f ∶ A→ B is dominated by a function g ∶ A→ B when:

∃(c,n0 > 0). ∀(n ≥ n0). f (n) ≤ cg(n)

Formally, we write this as f ∈O(g).

We want to prove 4+3n+4n2 ∈O(n3).

Scratch Work
We want to choose a c and n0 such that 4+3n+4n2 ≤ cn3. So, manipulate
the equation:

4+3n+4n2 ≤ 4n3+3n3+4n3 = 11n3

For this to work, we need 4 ≤ 4n3 and 3n ≤ 3n3. n ≥ 1 satisfies this.

Proof
Choose c = 11 and n0 = 1. Then, note that 4+3n+4n2 ≤ 4n3+3n3+4n3 =
11n3, because n ≥ 1. It follows that 4+3n+4n2 ∈O(n3).

Big-Oh Proofs 2 14

Definition (Big-Oh)
We say a function f ∶ A→ B is dominated by a function g ∶ A→ B when:

∃(c,n0 > 0). ∀(n ≥ n0). f (n) ≤ cg(n)

Formally, we write this as f ∈O(g).

We want to prove 4+3n+4n2 ∈O(n3).

Scratch Work
We want to choose a c and n0 such that 4+3n+4n2 ≤ cn3. So, manipulate
the equation:

4+3n+4n2 ≤ 4n3+3n3+4n3 = 11n3

For this to work, we need 4 ≤ 4n3 and 3n ≤ 3n3. n ≥ 1 satisfies this.

Proof
Choose c = 11 and n0 = 1. Then, note that 4+3n+4n2 ≤ 4n3+3n3+4n3 =
11n3, because n ≥ 1. It follows that 4+3n+4n2 ∈O(n3).

More Asymptotics 15

Definition (Big-Oh)
We say a function f ∶ A→ B is dominated by a function g ∶ A→ B when:

∃(c,n0 > 0). ∀(n ≥ n0). f (n) ≤ cg(n)

Formally, we write this as f ∈O(g).

Definition (Big-Omega)
We say a function f ∶ A→ B dominates a function g ∶ A→ B when:

∃(c,n0 > 0). ∀(n ≥ n0). f (n) ≥ cg(n)

Formally we write this as f ∈Ω(g).

Definition (Big-Theta)
We say a function f ∶ A→ B grows at the same rate as a function
g ∶ A→ B when: f ∈O(g) and f ∈Ω(g)
Formally we write this as f ∈Θ(g).

Important: You need not use the same c value for O and Ω to prove Θ.

Theta 16

True or False?
(1) 4+3n ∈Θ(n)

True

(2) 4+3n is Θ(n2)

False

If you want to say “ f is a tight bound for g”, do not use O–use Θ.

Theta 16

True or False?
(1) 4+3n ∈Θ(n) True
(2) 4+3n is Θ(n2)

False

If you want to say “ f is a tight bound for g”, do not use O–use Θ.

Theta 16

True or False?
(1) 4+3n ∈Θ(n) True
(2) 4+3n is Θ(n2) False

If you want to say “ f is a tight bound for g”, do not use O–use Θ.

Theta 16

True or False?
(1) 4+3n ∈Θ(n) True
(2) 4+3n is Θ(n2) False

If you want to say “ f is a tight bound for g”, do not use O–use Θ.

It’s the Worst Case! 17

Remember, we’re analyzing the worst case time! What else can we
analyze?

Space?

Average Case?

Best Case?

Time over multiple operations?

Quick Notes On log 18

Because log2 is so common in CS, we abbreviate it lg. When it comes to
Big-Oh, all log bases are the same:

Recall the log change of base formula:

logb(x) =
logd(x)
logd(b)

Then, to show logb(n) ∈O(logd(n)), note the following:

For all n ≥ 0, we have logb(x) = 1
logd(b) logd(x).

Final Note 19

Which is Better?

n1/10 or logn

logn grows more slowly (Big-Oh)
. . . But the cross-over point is around 5×1017

Today’s Takeaways! 20

There are many ways to compare algorithms

Understand formal Big-Oh, Big-Omega, Big-Theta

Be able to prove any of these

	Comparing Algorithms
	Asymptotic Analysis

