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A Special Purpose ADT: “BoundedSet” 1

BoundedSet ADT

Data Set of numerical keys where 0 ≤ k ≤B for some B ∈N
insert(key) Adds key to set
find(key) Returns true if key is in the set and false otherwise
delete(key) Deletes key from the set

The only difference between Set and BoundedSet is that BoundedSet
comes with an upper bound of B.
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Some Ideas for BoundedSet Implementations 2

Use any of the dictionaries we’ve already learned! This gets us
O(lgn) behavior for each of the operations.

Direct Address Table:
false false false false false false false false false
has[0] has[1] has[2] has[3] has[4] has[5] has[6] has[7] has[8]

void add(int value) { this.data[value] = true; }
boolean contains(int value) { return this.data[value]; }
void remove(int value) { this.data[value] = false; }

BitSet: Stores one or more ints and uses the ith bit to represent
the number i.

(1234)10 = (00000000000000000000010011010010)2 = {1,4,6,7,10}

void add(int value) { this.set |= 1 << value; }
boolean contains(int value) { return (this.set >> value) & 1; }
void remove(int value) { this.set &= ~(1 << value); }

Neat Fact: BitSets are often good enough in practice!
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Issues with BoundedSets? 3

Looking ahead, we know HashTables are coming. The clear question to
ask is we now have several dictionary choices; so, which do we use when?
Why bother using HashTables if BoundedSets are good enough?

BoundedSets Use A Lot of Space!
Given an input file with four billion integers, provide an algorithm to
generate an integer which is not contained in the file. (If you have 1GB of
memory? If you have 10MB of memory?)

Perhaps interestingly, a BitSet is the best solution here. The trick is that
ints are bounded! If we used a tree, we’d want a B-Tree (why?). A hash
table would end up using too much memory.

Store a set of prime numbers less than 1,000,000

There are relatively few prime numbers (78498/100000 < 8%). The right
choice here will be a hash table. The problem with a BoundedSet will end
up being space: the BitSet will be way too sparse.

Determine if a String has all unique characters.

This is going to be another BitSet problem! Characters are just ints in
disguise. The range of ACII characters can easily fit in a BitSet.

Store a set of students in a course by their Student ID Number.

We’re going to want a HashTable for this one. The number of students is
at most around 1000; the number of Student IDs is 1,000,000. The BitSet
would be wasting a ton of space!
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Issues with BoundedSets? 4

BoundedSets Only Allow Integer Keys!

If we ever want our keys to be something complicated like Strings or
arbitrary Objects, our implementations of BoundedSet aren’t going to
work. Notice that chars are fine though!

BoundedSets Are Very Bad For Certain Operations!
Given an input file with four billion integers, determine the the number of
unique integers in the file.

A B-Tree will work better here. In a BitSet, to get the size, we need to
loop over the entire key space. In a tree, it’s stored upon insertion.

Store a set of prime numbers with easy access to “previous” and “next”.

The right choice here will be a tree (probably an AVL tree). None of our
other data structures give us a useful way of getting “previous” or “next”.

Give a sorted list of Student IDs in the course.

We already figured out we can’t use a BitSet for this one. A HashTable
will end up being really bad too. A big downside to HashTables is that
they provide no guarantee about ordering!

Putting it all together: Although BoundedSet (and HashTable) are
basically the same ADT, they sacrifice operations related to ordering
(printSorted, findMin, findMax, pred, succ) for better runtime on
the core operations.
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BoundedSet → HashTable 5

Putting all these observations together, we see the following:
Use a Tree if we care about the ordering of the data.
Use a BitSet if we have int keys and the data is not sparse.
Use a HashTable if the key space is much larger than the number
of expected items or we need non-integer keys

Hash Tables
Provides O(1) core Dictionary operations (on average)
We call the key space the “universe”: U and the Hash Table T

We should use this data structure only when we expect ∣U ∣ >> ∣T ∣
(Or, the key space is non-integer values.)

These Requirements Are Really Common!
Compilers: all possible variables vs. defined ones
Databases: student names vs. actual students
. . .
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BoundedSet → HashTable 6

Game Plan
To get from BoundedSets to HashTables, we need to make several
generalizations/fixes:

Avoid sparseness of the table
Solution: Map multiple keys to the same table location

Allow non-integer keys
Solution: Provide a mapping from Type →N.

Deal with “collisions”
What do we do when two keys are in the same location?

We will handle these one at a time.



Fixing Sparseness 7

Course Roster
Store a set of students in a course by their Student ID Number.

If we use a BoundedSet, we will need 1,000,000 bytes which is severe
overkill for a 20 person class. The solution is to choose a mapping from
U → T . The traditional choice is to mod by the table size:

keyToIndex(k) = k mod ∣T ∣
Let’s look at a few examples:

U = {0,1, . . . ,1000}, ∣T ∣ = 10

Insert: 7,18,41,34,10

10 41 34 7 18

T[0] T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9]

U = {0,1, . . . ,1000}, ∣T ∣ = 10

Insert: 20,40,60,80,100

T[0] T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9]
These all go into the 0 bucket!
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Fixing Sparseness: PRIMES! 8

Our last example showed us that we can get really bad behavior with
this technique. What happened? Why was that so bad?

The more factors the table size has, the worse the distribution

In general, if x and y are co-prime:

ax ≡ bx (mod y) iff a ≡ b (mod y)

Technique: Choose ∣T ∣ to always be prime
Real-life data has patterns
The pattern is unlikely to follow a prime sequence
Some collision strategies only work well with prime table sizes

Investigating Table Size
Consider ∣T ∣ = 60. Note that 60 = 22×3×5. Consider the following
insertion sequences:
5, 10, 15, 20, . . . 10, 20, 30, . . . 2, 4, 6, 8, . . .
All of these waste significant amounts of the table!
What if we have ∣T ∣ = 61 instead? These “more likely patterns” won’t
waste the table.



Fixing Sparseness: PRIMES! 8

Our last example showed us that we can get really bad behavior with
this technique. What happened? Why was that so bad?

The more factors the table size has, the worse the distribution
In general, if x and y are co-prime:

ax ≡ bx (mod y) iff a ≡ b (mod y)

Technique: Choose ∣T ∣ to always be prime
Real-life data has patterns
The pattern is unlikely to follow a prime sequence
Some collision strategies only work well with prime table sizes

Investigating Table Size
Consider ∣T ∣ = 60. Note that 60 = 22×3×5. Consider the following
insertion sequences:
5, 10, 15, 20, . . . 10, 20, 30, . . . 2, 4, 6, 8, . . .
All of these waste significant amounts of the table!
What if we have ∣T ∣ = 61 instead? These “more likely patterns” won’t
waste the table.



Fixing Sparseness: PRIMES! 8

Our last example showed us that we can get really bad behavior with
this technique. What happened? Why was that so bad?

The more factors the table size has, the worse the distribution
In general, if x and y are co-prime:

ax ≡ bx (mod y) iff a ≡ b (mod y)

Technique: Choose ∣T ∣ to always be prime
Real-life data has patterns
The pattern is unlikely to follow a prime sequence
Some collision strategies only work well with prime table sizes

Investigating Table Size
Consider ∣T ∣ = 60. Note that 60 = 22×3×5. Consider the following
insertion sequences:
5, 10, 15, 20, . . . 10, 20, 30, . . . 2, 4, 6, 8, . . .
All of these waste significant amounts of the table!
What if we have ∣T ∣ = 61 instead? These “more likely patterns” won’t
waste the table.



Fixing Sparseness: PRIMES! 8

Our last example showed us that we can get really bad behavior with
this technique. What happened? Why was that so bad?

The more factors the table size has, the worse the distribution
In general, if x and y are co-prime:

ax ≡ bx (mod y) iff a ≡ b (mod y)

Technique: Choose ∣T ∣ to always be prime
Real-life data has patterns
The pattern is unlikely to follow a prime sequence
Some collision strategies only work well with prime table sizes

Investigating Table Size
Consider ∣T ∣ = 60. Note that 60 = 22×3×5. Consider the following
insertion sequences:
5, 10, 15, 20, . . . 10, 20, 30, . . . 2, 4, 6, 8, . . .

All of these waste significant amounts of the table!
What if we have ∣T ∣ = 61 instead? These “more likely patterns” won’t
waste the table.



Fixing Sparseness: PRIMES! 8

Our last example showed us that we can get really bad behavior with
this technique. What happened? Why was that so bad?

The more factors the table size has, the worse the distribution
In general, if x and y are co-prime:

ax ≡ bx (mod y) iff a ≡ b (mod y)

Technique: Choose ∣T ∣ to always be prime
Real-life data has patterns
The pattern is unlikely to follow a prime sequence
Some collision strategies only work well with prime table sizes

Investigating Table Size
Consider ∣T ∣ = 60. Note that 60 = 22×3×5. Consider the following
insertion sequences:
5, 10, 15, 20, . . . 10, 20, 30, . . . 2, 4, 6, 8, . . .
All of these waste significant amounts of the table!

What if we have ∣T ∣ = 61 instead? These “more likely patterns” won’t
waste the table.



Fixing Sparseness: PRIMES! 8

Our last example showed us that we can get really bad behavior with
this technique. What happened? Why was that so bad?

The more factors the table size has, the worse the distribution
In general, if x and y are co-prime:

ax ≡ bx (mod y) iff a ≡ b (mod y)

Technique: Choose ∣T ∣ to always be prime
Real-life data has patterns
The pattern is unlikely to follow a prime sequence
Some collision strategies only work well with prime table sizes

Investigating Table Size
Consider ∣T ∣ = 60. Note that 60 = 22×3×5. Consider the following
insertion sequences:
5, 10, 15, 20, . . . 10, 20, 30, . . . 2, 4, 6, 8, . . .
All of these waste significant amounts of the table!
What if we have ∣T ∣ = 61 instead? These “more likely patterns” won’t
waste the table.



Non-Integer Keys 9

Course Roster
Store a set of students in a course by their Access Username.

We need to find a way to map from U → int. This idea is called a hash
function.

Hash Function
A hash function is a mapping from the key set (U) to int. Ideally,
whatever function we use would have the following properties:

Uniform Distribution of Outputs: There are 232 32-bit ints; so,
the probability that the hash function maps to any individual output
should be 1

232 .

Low Computational Cost: We will be computing the hash function
a lot; so, we need it to be very easy to compute.

So, what do hash functions look like in practice?
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Hashing Non-ints 10

Here’s some ideas for hash functions for Strings:
h(s0s1⋯sm−1) = 1

This hash function is very fast, but it maps everything to the same
index.

h(s0s1⋯sm−1) =
m−1

∑
i=0

si

This hash function ignores crucial information about the string: the
positions of the characters.

h(s0s1⋯sm−1) = 2s03s15s27s311s4 . . .

This hash function maps every string to a unique number, but it’s
difficult to compute.

h(s0s1⋯sm−1) =
m−1

∑
i=0

31isi

This hash function is a nice compromise. It does have collisions, but
all information about the String is used.
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Combining Hash Functions 11

A Few Tricks
Use all 32 bits (careful, that includes negative numbers)
Use different overlapping bits for different parts of the hash (This is
why a factor of 31i works better than 256i)
When smashing two hashes into one hash, use bitwise-xor
Rely on expertise of others; consult books and other resources
If keys are known ahead of time, choose a perfect hash

Hashing a Person Object

class Person {
String first; String middle; String last;
Date birthdate;

}

An inherent trade-off: hashing-time vs. collision-avoidance
Use all the fields?



Putting The Pieces Together 12

E
hash functionÐÐÐÐÐÐÐ→ int

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Hash Table Client

mod ∣T ∣ÐÐÐÐ→Table Index collision?ÐÐÐÐÐ→ Fixed Table Index
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Hash Table Library

Client Responsibilities
The client is responsible for choosing a “good” hash function (fast
& spreads out outputs)
The client should avoid “wasting” any part of E or the bits of the
int

Library Responsibilities
The library is responsible for mapping the integer to a table index
The library is responsible for choosing the table size
The library is responsible for keeping track of collisions



Collisions 13

Definition (Collision)
A collision is when two distinct keys map to the same location in the
hash table.

A good hash function attempts to avoid as many collisions as possible,
but they are inevitable.

How do we deal with collisions?

There are multiple strategies:
Separate Chaining
Open Addressing

Linear Probing
Quadratic Probing
Double Hashing

Today, we’ll discuss Separate Chaining; next time, we’ll discuss open
addressing.



Separate Chaining 14

Idea
If we hash multiple items to the same location, store a LinkedList of
them.

Example (Insert: 10,22,107,12,42)

10

42

12

22

107

T[0] T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9]

What is the worst case time for find?

Well, if the hash function were h(k) = c, then we’d get a linked list of size
n in one bucket. So, it’s O(n).
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Load Factor 15

Definition (Load Factor (λ ))
The load factor of a hash table is a measure of “how full” it is. We
define it as follows:

λ = N
∣T ∣

If we’re using separate chaining, the average number of elements per
bucket is λ .

If we do inserts followed by random finds. . .
Each unsuccessful find compares against λ items
Each successful find compares against λ items

For separate chaining, we should keep λ ≈ 1



Load Factor Examples 16

Example (What is the Load Factor?)

10

42

12

22

107

T[0] T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9]

What is λ for this hash table?

λ = N
∣T ∣ =

5
10
= 0.5

Example (What is the Load Factor?)

10

71

2

31

42

12

22

63

73

75

5

65

95

86
27

47

88

18

38

98

99

T[0] T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9]

What is λ for this hash table? λ = N
∣T ∣ =

21
10
= 2.1
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Separate Chaining Delete 17

The algorithm for delete is just the reverse of insert. We remove it
from the linked list:

Example (Delete: 12)

10

42

12

22

107

T[0] T[1] T[2] T[3] T[4] T[5] T[6] T[7] T[8] T[9]

Just like insert, the worst case runtime is O(n), but average is O(1).


