
CS 2: Introduction to Programming Methods

Graphs 1:
What is a Graph?

DFS and BFS



LinkedLists are to Trees as Trees are to . . . 1

Where We’ve Been
Essential ADTs: Lists, Stacks, Queues, Priority Queues, Heaps,
Vanilla Trees, BSTs, Hash Tables
Important Algorithms: Traversals, Sorting, “Divide and Conquer
Algorithms”

So, what’s next?

Graphs and Graph Algorithms
A nearly universal data structure that will change the way you think
about the world. (Seriously.)

Graphs are more common than all the other data structures combined
(this is in part true, because they’re a generalization of most of the
other data structures).



A Graph is a Thingy. . . 2

a

V = {a}, E =�

b

c

V = {b,c},
E = {{b,c}}

f

e d

V = {d,e, f},
E = {{e, f},{ f ,d}}

g

h

ij

V = {g,h, i, j},
E = {{x,y} � x,y ∈V ∧ x ≠ y}

We call the circles vertices and the lines edges.

Definition (Graph)
A Graph is a pair, G = (V,E), where:

V is a set of vertices, and
E is a set of edges (pairs of vertices).



A Graph is a Thingy. . . 2

a

V = {a}, E =�

b

c

V = {b,c},
E = {{b,c}}

f

e d

V = {d,e, f},
E = {{e, f},{ f ,d}}

g

h

ij

V = {g,h, i, j},
E = {{x,y} � x,y ∈V ∧ x ≠ y}

We call the circles vertices and the lines edges.

Definition (Graph)
A Graph is a pair, G = (V,E), where:

V is a set of vertices, and
E is a set of edges (pairs of vertices).



Graphs are an ADT? 3

We can think of graphs as an ADT with operations like
x.isNeighbor(y), but it’s not clear what should be included:

x.reachableFrom(y)?
x.shortestPathTo(y)?
x.centrality()?
. . .

We will approach graphs di�erently:
Graphs are an abstract concept that we can apply in di�erent ways
to the problem at hand.
A “graph problem” is one that we can mathematically model as a
graph. . .



Modelling Problems with Graphs 4

Consider the following questions:
How can I allocate registers to variables in a program?

How popular am I?

What’s the minimum amount of wire I have to use to connect all
these homes?

Just how does Google work?

Can I automatically tag the words of a sentence with their part of
speech?

How do I make look-ups in databases quick at Facebook’s scale?



Why Graphs? Finding Important People 5

If this graph is a social network, who is most important?
Who has the most influence?



Why Graphs? 6

What is the cheapest/shortest/etc. flight from location A to B?

http://allthingsgraphed.com/public/images/airline-google-earth.png

http://allthingsgraphed.com/public/images/airline-google-earth.png


Why Graphs? 7

How do words associate with each other? How easy are words to
confuse? How similar are spellings?

http://allthingsgraphed.com/public/images/wordnet-synonyms/good-evil-graph-path.png

http://allthingsgraphed.com/public/images/wordnet-synonyms/good-evil-graph-path.png


Why Graphs? 8

Where should we target cancer in a particular patient’s body?

https://gigaom.com/2013/03/26/how-researchers-are-fighting-lung-cancer-using-pagerank/

https://gigaom.com/2013/03/26/how-researchers-are-fighting-lung-cancer-using-pagerank/


Why Graphs? 9

How far am I from my friends? Why does my social network look
clustered? Why are all my friends more popular than I am?

http://allthingsgraphed.com/public/images/facebook/facebook-friend-graph.png

http://allthingsgraphed.com/public/images/facebook/facebook-friend-graph.png


Why Graphs? 10

What can we find out from political blog data? Who listens to whom?

http://allthingsgraphed.com/public/images/political-blogs-2004/left-right.png

http://allthingsgraphed.com/public/images/political-blogs-2004/left-right.png


Why Graphs? 11

What e�ect did Robin Williams have on the people around him?

http://allthingsgraphed.com/public/images/imdb/robin-williams-graph.png

http://allthingsgraphed.com/public/images/imdb/robin-williams-graph.png


Why Graphs? 12

What happens when veteran teachers leave school networks?

http://www.mentalmunition.com/2013/05/using-social-network-analysis-to-find.html

http://www.mentalmunition.com/2013/05/using-social-network-analysis-to-find.html


Modelling Problems with Graphs 13

To model a problem with a graph, you need to make two choices
1 What are the vertices?
2 What are the edges?

Maps

Vertices: regions; Edges: “is next to”

The Internet

Vertices: websites; Edges: “has a link to”

Social Networks

Vertices: people; Edges: “is friends with”

A Running Program

Vertices: methods; Edges: “calls”

A Chess Game

Vertices: boards; Edges: “can move to”

Telephone Lines

Vertices: houses; Edges: “telephone line between”

CS Courses

Vertices: courses; Edges: “is a pre-requisite of”

With these in mind, let’s talk about more crucial definitions.



Modelling Problems with Graphs 13

To model a problem with a graph, you need to make two choices
1 What are the vertices?
2 What are the edges?

Maps
Vertices: regions; Edges: “is next to”

The Internet

Vertices: websites; Edges: “has a link to”

Social Networks

Vertices: people; Edges: “is friends with”

A Running Program

Vertices: methods; Edges: “calls”

A Chess Game

Vertices: boards; Edges: “can move to”

Telephone Lines

Vertices: houses; Edges: “telephone line between”

CS Courses

Vertices: courses; Edges: “is a pre-requisite of”

With these in mind, let’s talk about more crucial definitions.



Modelling Problems with Graphs 13

To model a problem with a graph, you need to make two choices
1 What are the vertices?
2 What are the edges?

Maps
Vertices: regions; Edges: “is next to”

The Internet
Vertices: websites; Edges: “has a link to”

Social Networks

Vertices: people; Edges: “is friends with”

A Running Program

Vertices: methods; Edges: “calls”

A Chess Game

Vertices: boards; Edges: “can move to”

Telephone Lines

Vertices: houses; Edges: “telephone line between”

CS Courses

Vertices: courses; Edges: “is a pre-requisite of”

With these in mind, let’s talk about more crucial definitions.



Modelling Problems with Graphs 13

To model a problem with a graph, you need to make two choices
1 What are the vertices?
2 What are the edges?

Maps
Vertices: regions; Edges: “is next to”

The Internet
Vertices: websites; Edges: “has a link to”

Social Networks
Vertices: people; Edges: “is friends with”

A Running Program

Vertices: methods; Edges: “calls”

A Chess Game

Vertices: boards; Edges: “can move to”

Telephone Lines

Vertices: houses; Edges: “telephone line between”

CS Courses

Vertices: courses; Edges: “is a pre-requisite of”

With these in mind, let’s talk about more crucial definitions.



Modelling Problems with Graphs 13

To model a problem with a graph, you need to make two choices
1 What are the vertices?
2 What are the edges?

Maps
Vertices: regions; Edges: “is next to”

The Internet
Vertices: websites; Edges: “has a link to”

Social Networks
Vertices: people; Edges: “is friends with”

A Running Program
Vertices: methods; Edges: “calls”

A Chess Game

Vertices: boards; Edges: “can move to”

Telephone Lines

Vertices: houses; Edges: “telephone line between”

CS Courses

Vertices: courses; Edges: “is a pre-requisite of”

With these in mind, let’s talk about more crucial definitions.



Modelling Problems with Graphs 13

To model a problem with a graph, you need to make two choices
1 What are the vertices?
2 What are the edges?

Maps
Vertices: regions; Edges: “is next to”

The Internet
Vertices: websites; Edges: “has a link to”

Social Networks
Vertices: people; Edges: “is friends with”

A Running Program
Vertices: methods; Edges: “calls”

A Chess Game
Vertices: boards; Edges: “can move to”

Telephone Lines

Vertices: houses; Edges: “telephone line between”

CS Courses

Vertices: courses; Edges: “is a pre-requisite of”

With these in mind, let’s talk about more crucial definitions.



Modelling Problems with Graphs 13

To model a problem with a graph, you need to make two choices
1 What are the vertices?
2 What are the edges?

Maps
Vertices: regions; Edges: “is next to”

The Internet
Vertices: websites; Edges: “has a link to”

Social Networks
Vertices: people; Edges: “is friends with”

A Running Program
Vertices: methods; Edges: “calls”

A Chess Game
Vertices: boards; Edges: “can move to”

Telephone Lines
Vertices: houses; Edges: “telephone line between”

CS Courses

Vertices: courses; Edges: “is a pre-requisite of”

With these in mind, let’s talk about more crucial definitions.



Modelling Problems with Graphs 13

To model a problem with a graph, you need to make two choices
1 What are the vertices?
2 What are the edges?

Maps
Vertices: regions; Edges: “is next to”

The Internet
Vertices: websites; Edges: “has a link to”

Social Networks
Vertices: people; Edges: “is friends with”

A Running Program
Vertices: methods; Edges: “calls”

A Chess Game
Vertices: boards; Edges: “can move to”

Telephone Lines
Vertices: houses; Edges: “telephone line between”

CS Courses
Vertices: courses; Edges: “is a pre-requisite of”

With these in mind, let’s talk about more crucial definitions.



Making A Connection! 14

Definition (Connected Graph)
We say a graph is connected if for every pair of vertices, u,v ∈V , there is
a path from u to v.

Intuitively, if we pick up the graph and shake it around, if anything isn’t
still in the air, then the graph isn’t connected.

1

2

3

4 6

5

7

8

Connected! Not Connected!



Making A Connection! 14

Definition (Connected Graph)
We say a graph is connected if for every pair of vertices, u,v ∈V , there is
a path from u to v.
Intuitively, if we pick up the graph and shake it around, if anything isn’t
still in the air, then the graph isn’t connected.

1

2

3

4 6

5

7

8

Connected! Not Connected!



Making A Connection! 14

Definition (Connected Graph)
We say a graph is connected if for every pair of vertices, u,v ∈V , there is
a path from u to v.
Intuitively, if we pick up the graph and shake it around, if anything isn’t
still in the air, then the graph isn’t connected.

1

2

3

4 6

5

7

8

Connected! Not Connected!



A “Worklist” 15

A very common type of algorithm on graphs is a worklist algorithm.

The WorkList ADT:

WorkList ADT
add(v) Notifies the worklist that it must handle v
next() Returns the next vertex to work on
hasWork() Returns true if there’s any work left and false other-

wise

Importantly, we do not care how the worklist manages the work.
(Okay, we do, but not when coming up with the algorithm.)

Worklist algorithms will always look like the following:
1 worklist = /* add initial work to worklist */
2 while (worklist.hasWork()) {
3 v = worklist.next();
4 doWork(v);
5 }



A “Worklist” 15

A very common type of algorithm on graphs is a worklist algorithm.

The WorkList ADT:

WorkList ADT
add(v) Notifies the worklist that it must handle v
next() Returns the next vertex to work on
hasWork() Returns true if there’s any work left and false other-

wise

Importantly, we do not care how the worklist manages the work.
(Okay, we do, but not when coming up with the algorithm.)

Worklist algorithms will always look like the following:
1 worklist = /* add initial work to worklist */
2 while (worklist.hasWork()) {
3 v = worklist.next();
4 doWork(v);
5 }



Searching a Graph 16

We said a graph is connected when there is a path between every pair of
vertices. What if we don’t know if a graph is connected?

Relatedly, we might ask the question:

Is a vertex w reachable (does there exist a path) from a vertex v?

We could use this algorithm to find a path, do something with every
node, search for a particular node, etc.

Unsurprisingly, this is a worklist algorithm:
1 search(v) {
2 worklist = [v];
3 while (worklist.hasWork()) {
4 v = worklist.next();
5 doSomething(v);
6 for (w : v.neighbors()) {
7 worklist.add(w);
8 }
9 }

10 }

a

d

b

e

c

f

g

i

h

j



Searching a Graph 16

We said a graph is connected when there is a path between every pair of
vertices. What if we don’t know if a graph is connected?

Relatedly, we might ask the question:

Is a vertex w reachable (does there exist a path) from a vertex v?

We could use this algorithm to find a path, do something with every
node, search for a particular node, etc.

Unsurprisingly, this is a worklist algorithm:
1 search(v) {
2 worklist = [v];
3 while (worklist.hasWork()) {
4 v = worklist.next();
5 doSomething(v);
6 for (w : v.neighbors()) {
7 worklist.add(w);
8 }
9 }

10 }

a

d

b

e

c

f

g

i

h

j



Searching a Graph 16

We said a graph is connected when there is a path between every pair of
vertices. What if we don’t know if a graph is connected?

Relatedly, we might ask the question:

Is a vertex w reachable (does there exist a path) from a vertex v?

We could use this algorithm to find a path, do something with every
node, search for a particular node, etc.

Unsurprisingly, this is a worklist algorithm:
1 search(v) {
2 worklist = [v];
3 while (worklist.hasWork()) {
4 v = worklist.next();
5 doSomething(v);
6 for (w : v.neighbors()) {
7 worklist.add(w);
8 }
9 }

10 }

a

d

b

e

c

f

g

i

h

j



Searching a Graph 16

We said a graph is connected when there is a path between every pair of
vertices. What if we don’t know if a graph is connected?

Relatedly, we might ask the question:

Is a vertex w reachable (does there exist a path) from a vertex v?

We could use this algorithm to find a path, do something with every
node, search for a particular node, etc.

Unsurprisingly, this is a worklist algorithm:
1 search(v) {
2 worklist = [v];
3 while (worklist.hasWork()) {
4 v = worklist.next();
5 doSomething(v);
6 for (w : v.neighbors()) {
7 worklist.add(w);
8 }
9 }

10 }

a

d

b

e

c

f

g

i

h

j



Searching a Graph 16

We said a graph is connected when there is a path between every pair of
vertices. What if we don’t know if a graph is connected?

Relatedly, we might ask the question:

Is a vertex w reachable (does there exist a path) from a vertex v?

We could use this algorithm to find a path, do something with every
node, search for a particular node, etc.

Unsurprisingly, this is a worklist algorithm:
1 search(v) {
2 worklist = [v];
3 while (worklist.hasWork()) {
4 v = worklist.next();
5 doSomething(v);
6 for (w : v.neighbors()) {
7 worklist.add(w);
8 }
9 }

10 }

a

d

b

e

c

f

g

i

h

j



Searching a Graph 16

We said a graph is connected when there is a path between every pair of
vertices. What if we don’t know if a graph is connected?

Relatedly, we might ask the question:

Is a vertex w reachable (does there exist a path) from a vertex v?

We could use this algorithm to find a path, do something with every
node, search for a particular node, etc.

Unsurprisingly, this is a worklist algorithm:
1 search(v) {
2 worklist = [v];
3 while (worklist.hasWork()) {
4 v = worklist.next();
5 doSomething(v);
6 for (w : v.neighbors()) {
7 worklist.add(w);
8 }
9 }

10 }

a

d

b

e

c

f

g

i

h

j



Searching a Graph 16

We said a graph is connected when there is a path between every pair of
vertices. What if we don’t know if a graph is connected?

Relatedly, we might ask the question:

Is a vertex w reachable (does there exist a path) from a vertex v?

We could use this algorithm to find a path, do something with every
node, search for a particular node, etc.

Unsurprisingly, this is a worklist algorithm:
1 search(v) {
2 worklist = [v];
3 while (worklist.hasWork()) {
4 v = worklist.next();
5 doSomething(v);
6 for (w : v.neighbors()) {
7 worklist.add(w);
8 }
9 }

10 }

a

d

b

e

c

f

g

i

h

j



Searching a Graph 16

We said a graph is connected when there is a path between every pair of
vertices. What if we don’t know if a graph is connected?

Relatedly, we might ask the question:

Is a vertex w reachable (does there exist a path) from a vertex v?

We could use this algorithm to find a path, do something with every
node, search for a particular node, etc.

Unsurprisingly, this is a worklist algorithm:
1 search(v) {
2 worklist = [v];
3 while (worklist.hasWork()) {
4 v = worklist.next();
5 doSomething(v);
6 for (w : v.neighbors()) {
7 worklist.add(w);
8 }
9 }

10 }

a

d

b

e

c

f

g

i

h

j



Searching a Graph 16

We said a graph is connected when there is a path between every pair of
vertices. What if we don’t know if a graph is connected?

Relatedly, we might ask the question:

Is a vertex w reachable (does there exist a path) from a vertex v?

We could use this algorithm to find a path, do something with every
node, search for a particular node, etc.

Unsurprisingly, this is a worklist algorithm:
1 search(v) {
2 worklist = [v];
3 while (worklist.hasWork()) {
4 v = worklist.next();
5 doSomething(v);
6 for (w : v.neighbors()) {
7 worklist.add(w);
8 }
9 }

10 }

a

d

b

e

c

f

g

i

h

j



Searching a Graph 16

We said a graph is connected when there is a path between every pair of
vertices. What if we don’t know if a graph is connected?

Relatedly, we might ask the question:

Is a vertex w reachable (does there exist a path) from a vertex v?

We could use this algorithm to find a path, do something with every
node, search for a particular node, etc.

Unsurprisingly, this is a worklist algorithm:
1 search(v) {
2 worklist = [v];
3 while (worklist.hasWork()) {
4 v = worklist.next();
5 doSomething(v);
6 for (w : v.neighbors()) {
7 worklist.add(w);
8 }
9 }

10 }

a

d

b

e

c

f

g

i

h

j



Searching a Graph 16

We said a graph is connected when there is a path between every pair of
vertices. What if we don’t know if a graph is connected?

Relatedly, we might ask the question:

Is a vertex w reachable (does there exist a path) from a vertex v?

We could use this algorithm to find a path, do something with every
node, search for a particular node, etc.

Unsurprisingly, this is a worklist algorithm:
1 search(v) {
2 worklist = [v];
3 while (worklist.hasWork()) {
4 v = worklist.next();
5 doSomething(v);
6 for (w : v.neighbors()) {
7 worklist.add(w);
8 }
9 }

10 }

a

d

b

e

c

f

g

i

h

j



Searching a Graph 16

We said a graph is connected when there is a path between every pair of
vertices. What if we don’t know if a graph is connected?

Relatedly, we might ask the question:

Is a vertex w reachable (does there exist a path) from a vertex v?

We could use this algorithm to find a path, do something with every
node, search for a particular node, etc.

Unsurprisingly, this is a worklist algorithm:
1 search(v) {
2 worklist = [v];
3 while (worklist.hasWork()) {
4 v = worklist.next();
5 doSomething(v);
6 for (w : v.neighbors()) {
7 worklist.add(w);
8 }
9 }

10 }

a

d

b

e

c

f

g

i

h

j



What Happened? 17

1 search(v) {
2 worklist = [v];
3 while (worklist.hasWork()) {
4 v = worklist.next();
5 doSomething(v);
6 for (w : v.neighbors()) {
7 worklist.add(w);
8 }
9 }

10 }

a

d

b

e

c

f

g

i

h

j

What Happened?
We started searching paths in the graph and eventually went back and
between a and b.
This happened, because there were two distinct paths between a and b:

a → b and a → d → e → c → b

We followed the cycle in our graph!

A Corollary: This wouldn’t have happened on a tree!
That is, we just found an algorithm to check for tree-ness!



What Happened? 17

1 search(v) {
2 worklist = [v];
3 while (worklist.hasWork()) {
4 v = worklist.next();
5 doSomething(v);
6 for (w : v.neighbors()) {
7 worklist.add(w);
8 }
9 }

10 }

a

d

b

e

c

f

g

i

h

j

What Happened?
We started searching paths in the graph and eventually went back and
between a and b.
This happened, because there were two distinct paths between a and b:

a → b and a → d → e → c → b

We followed the cycle in our graph!

A Corollary: This wouldn’t have happened on a tree!
That is, we just found an algorithm to check for tree-ness!



What Happened? 17

1 search(v) {
2 worklist = [v];
3 while (worklist.hasWork()) {
4 v = worklist.next();
5 doSomething(v);
6 for (w : v.neighbors()) {
7 worklist.add(w);
8 }
9 }

10 }

a

d

b

e

c

f

g

i

h

j

What Happened?
We started searching paths in the graph and eventually went back and
between a and b.
This happened, because there were two distinct paths between a and b:

a → b and a → d → e → c → b

We followed the cycle in our graph!

A Corollary: This wouldn’t have happened on a tree!
That is, we just found an algorithm to check for tree-ness!



Searching a Graph (with a SortedList) 18

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a SortedList) 18

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a SortedList) 18

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a SortedList) 18

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a SortedList) 18

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a SortedList) 18

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a SortedList) 18

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a SortedList) 18

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a SortedList) 18

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a SortedList) 18

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a SortedList) 18

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a SortedList) 18

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a SortedList) 18

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a SortedList) 18

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a SortedList) 18

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a SortedList) 18

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a SortedList) 18

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a SortedList) 18

1 search(v) {
2 worklist = [v];
3 seen = {v};
4 while (worklist.hasWork()) {
5 v = worklist.next();
6 doSomething(v);
7 for (w : v.neighbors()) {
8 if (w not seen) {
9 worklist.add(w);

10 seen = seen ∪ {w};
11 }
12 }
13 }
14 }

We have two ways of fixing this:
1 insist that the worklist take

care of duplicates, and
2 avoid feeding duplicates to

the worklist

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Stack) 19

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist
↓↑

a

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Stack) 19

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist
↓↑

d
b

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Stack) 19

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist
↓↑

d
b

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Stack) 19

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist
↓↑

g
f
e
b

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Stack) 19

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist
↓↑

g
f
e
b

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Stack) 19

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist
↓↑

i
h
f
e
b

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Stack) 19

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist
↓↑

i
h
f
e
b

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Stack) 19

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist
↓↑

h
f
e
b

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Stack) 19

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist
↓↑

h
f
e
b

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Stack) 19

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist
↓↑

f
e
b

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Stack) 19

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist
↓↑

f
e
b

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Stack) 19

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist
↓↑

e
b

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Stack) 19

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist
↓↑

e
b

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Stack) 19

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist
↓↑

c
b

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Stack) 19

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist
↓↑

c
b

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Stack) 19

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist
↓↑

b

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Stack) 19

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist
↓↑

b

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Stack) 19

Okay, but we’d never actually use a SortedList. How about a Stack?

When we use a Stack:
1 This algorithm is called DFS (depth-first search)
2 We follow a path as far as possible, then back up
3 It can be written recursively

worklist
↓↑

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Queue) 20

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� a ←�

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Queue) 20

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� b d ←�

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Queue) 20

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� b d ←�

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Queue) 20

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� d c e ←�

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Queue) 20

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� d c e ←�

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Queue) 20

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� c e f g ←�

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Queue) 20

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� c e f g ←�

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Queue) 20

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� e f g ←�

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Queue) 20

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� e f g ←�

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Queue) 20

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� f g h ←�

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Queue) 20

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� f g h ←�

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Queue) 20

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� g h ←�

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Queue) 20

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� g h ←�

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Queue) 20

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� h i ←�

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Queue) 20

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� h i ←�

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Queue) 20

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� i ←�

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Queue) 20

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←� i ←�

a

d

b

e

c

f

g

i

h

j



Searching a Graph (with a Queue) 20

Any reason we shouldn’t use a Queue?

When we use a Queue:
1 This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist ←

a

d

b

e

c

f

g

i

h

j



Searching a Graph: Recovering The Path 21

Use A Dictionary!

search(v) {
worklist = [v];
from = new Dictionary();
from.put(v, null);
while (worklist.hasWork()) {

v = worklist.next();
doSomething(v);
for (w : v.neighbors()) {

if (w not in from) {
worklist.add(w);
from.put(w, v);

}
}

}
return from;

}

findPath(v, w) {
from = search(v);
path = [];
curr = w;
while (curr != null) {

path.add(0, curr);
curr = from[curr];

}
return path;

}



Asymptotic Analysis of BFS and DFS 22

Runtime
Both algorithms visit all nodes in the connected component: �V �
Both algorithms can visit a node once for each edge in the graph: �E �

So, BFS and DFS are O(�V �+ �E �) (this is called “graph linear”).

Space
DFS: If the longest path has length p and the largest number of
neighbors is n, then DFS stores at most pn vertices
BFS: Consider a tree. BFS will hold the entire bottom level which is
O(�V �).



BFS and DFS Trade-O�s 23

Trade-O�s
DFS has better space usage, but it might find a circuitous path
BFS will always find the shortest path to a node, but it will use more
memory

Iterative Deepening
Iterative Deepening is a DFS that bounds the depth:

1 int depth = 1;
2 while (there are nodes to explore) {
3 dfs(v, depth);
4 depth++;
5 }

Since most of the vertices are “leaves”, this actually doesn’t waste
much time!



Generalizing Graphs: Direction & Edge Weight 24

Undirected vs. Directed (do the edges have arrows?)

Undirected
a

b

c

Directed
a

b

c

Weighted vs. Unweighted (do the edges have weights?)

Unweighted & Directed

a

b

c

Weighted & Undirected

100

50

1 a

b

c



Generalizing Graphs: Multi-Edges 25

Simple vs. Multi (loops on vertices? multiple edges?)

Multi-graph

a

b

c

Graph with Loops

100

50

1 a

b

c

These generalizations are all useful in di�erent domains. We’re
going to talk a lot more about them over the next few lectures.

Next lecture, we’ll be working mostly with directed graphs.



A Word about Sparsity 26

Back to counting edges. In a graph without multiple edges, if there are n
vertices, there can be anywhere from 0 to n2 edges.

This is a very wide range. A graph with fewer edges is called sparse and
one with closer to n2 is called dense.

We already saw that graph traversal was O(�E �+ �V �):
On a sparse graph, that’s O(�V �)
On a dense graph, that’s O(�V �2).

Sparsity makes a huge di�erence!



Graph Data Structures 27

a

b c

d

Adjacency Matrix
a b c d

a 0 1 1 0
b 1 0 1 0
c 1 1 0 1
d 0 0 1 0

Adjacency List

a: b �→ c �→

b: a �→ c �→

c: a �→ b �→ d �→

d: c �→



Adjacency Matrix Analysis 28

Adjacency Matrix
a b c d

a 0 1 1 0
b 1 0 1 0
c 1 1 0 1
d 0 0 1 0

Adjacency List

a: b �→ c �→

b: a �→ c �→

c: a �→ b �→ d �→

d: c �→

Adjacency Matrix Properties
How long to. . .

Get a vertex’s out-edges? O(�V �)
Get a vertex’s in-edges? O(�V �)
Check if an edge exists? O(1)
Insert an edge? O(1)
Delete an edge? O(1)

Space Requirements: O(�V �2)
Adjacency Matrices are reasonable for dense graphs, but not otherwise.



Adjacency List Analysis 29

Adjacency Matrix
a b c d

a 0 1 1 0
b 1 0 1 0
c 1 1 0 1
d 0 0 1 0

Adjacency List

a: b �→ c �→

b: a �→ c �→

c: a �→ b �→ d �→

d: c �→

Adjacency List Properties
How long to. . .

Get a vertex’s out-edges? O(d)
Get a vertex’s in-edges? O(�E �)

To fix this, keep a second adjacency list going the other way
Check if an edge exists? O(d)
Insert an edge? O(1)
Delete an edge? O(d)

Space Requirements: O(�V �+ �E �)
Adjacency Lists should be your goto choice.


